Double Redundancy Electro-Hydrostatic Actuator Fault Diagnosis Method Based on Progressive Fault Diagnosis Method

The electro-hydrostatic actuator (EHA) is the key component of most electric aircraft, and research on its fault diagnosis technology is of great significance to improve the safety and reliability of aircraft flight. However, traditional fault diagnosis methods only focus on partial failures and can...

Full description

Bibliographic Details
Main Authors: Hai-Tao Qi, Dong-Ao Zhao, Duo Liu, Xu Liu
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/11/9/264
Description
Summary:The electro-hydrostatic actuator (EHA) is the key component of most electric aircraft, and research on its fault diagnosis technology is of great significance to improve the safety and reliability of aircraft flight. However, traditional fault diagnosis methods only focus on partial failures and cannot completely diagnose the whole EHA system. In this paper, the progressive fault diagnosis method (PFDM) is proposed for overall diagnosis of whole EHA system, which can be divided into four levels for health detection and fault diagnosis of the overall EHA system. PFDM combines fault diagnosis methods based on Kalman filter, threshold, logic, and EHA system analysis model to diagnose the whole EHA system layer by layer. At the same time, in order to ensure the normal operation of the EHA system after fault diagnosis, double redundancy design is creatively carried out for the EHA system to facilitate system reconstruction after fault detection. It can be continuously modified according to different EHA system parameters and measured signals to improve the accuracy of fault diagnosis. The experimental results show that PFDM can accurately locate and identify 22 faults of the double redundancy EHA system by using the accurate EHA system mathematical model. PFDM improves the fault diagnosis response time to 4 ms, greatly improving the safety and reliability of the double redundancy EHA system.
ISSN:2076-0825