Federated Multi-Model Transfer Learning-Based Fault Diagnosis with Peer-to-Peer Network for Wind Turbine Cluster

Intelligent fault diagnosis for a single wind turbine is hindered by the lack of sufficient useful data, while multi-turbines have various faults, resulting in complex distributions. Collaborative intelligence can better solve these problems. Therefore, a peer-to-peer network is constructed with one...

Full description

Bibliographic Details
Main Authors: Wanqian Yang, Gang Yu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/10/11/972
Description
Summary:Intelligent fault diagnosis for a single wind turbine is hindered by the lack of sufficient useful data, while multi-turbines have various faults, resulting in complex distributions. Collaborative intelligence can better solve these problems. Therefore, a peer-to-peer network is constructed with one node corresponding to one wind turbine in a cluster. Each node is equivalent and functional replicable with a new federated transfer learning method, including model transfer based on multi-task learning and model fusion based on dynamic adaptive weight adjustment. Models with convolutional neural networks are trained locally and transmitted among the nodes. A solution for the processes of data management, information transmission, model transfer and fusion is provided. Experiments are conducted on a fault signal testing bed and bearing dataset of Case Western Reserve University. The results show the excellent performance of the method for fault diagnosis of a gearbox in a wind turbine cluster.
ISSN:2075-1702