A complete classification of weakly Dedekind groups

A finite group is called a weakly Dedekind group if all its noncyclic subgroups are normal. In this paper, we determine the complete classification of weakly Dedekind groups.

Bibliographic Details
Main Authors: Huaguo Shi, Zhangjia Han, Pengfei Guo
Format: Article
Language:English
Published: AIMS Press 2024-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024387?viewType=HTML
_version_ 1797277547994546176
author Huaguo Shi
Zhangjia Han
Pengfei Guo
author_facet Huaguo Shi
Zhangjia Han
Pengfei Guo
author_sort Huaguo Shi
collection DOAJ
description A finite group is called a weakly Dedekind group if all its noncyclic subgroups are normal. In this paper, we determine the complete classification of weakly Dedekind groups.
first_indexed 2024-03-07T15:50:58Z
format Article
id doaj.art-074724472bd2413ba5330d6ff5df235c
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-07T15:50:58Z
publishDate 2024-02-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-074724472bd2413ba5330d6ff5df235c2024-03-05T01:29:54ZengAIMS PressAIMS Mathematics2473-69882024-02-01947955797210.3934/math.2024387A complete classification of weakly Dedekind groupsHuaguo Shi 0Zhangjia Han1 Pengfei Guo21. Department of Teacher Education, Sichuan Vocational and Technical College, Suining 629000, China2. School of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China3. School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, ChinaA finite group is called a weakly Dedekind group if all its noncyclic subgroups are normal. In this paper, we determine the complete classification of weakly Dedekind groups.https://www.aimspress.com/article/doi/10.3934/math.2024387?viewType=HTMLfinite groupnormal subgroupcyclic subgroupp-group
spellingShingle Huaguo Shi
Zhangjia Han
Pengfei Guo
A complete classification of weakly Dedekind groups
AIMS Mathematics
finite group
normal subgroup
cyclic subgroup
p-group
title A complete classification of weakly Dedekind groups
title_full A complete classification of weakly Dedekind groups
title_fullStr A complete classification of weakly Dedekind groups
title_full_unstemmed A complete classification of weakly Dedekind groups
title_short A complete classification of weakly Dedekind groups
title_sort complete classification of weakly dedekind groups
topic finite group
normal subgroup
cyclic subgroup
p-group
url https://www.aimspress.com/article/doi/10.3934/math.2024387?viewType=HTML
work_keys_str_mv AT huaguoshi acompleteclassificationofweaklydedekindgroups
AT zhangjiahan acompleteclassificationofweaklydedekindgroups
AT pengfeiguo acompleteclassificationofweaklydedekindgroups
AT huaguoshi completeclassificationofweaklydedekindgroups
AT zhangjiahan completeclassificationofweaklydedekindgroups
AT pengfeiguo completeclassificationofweaklydedekindgroups