Skew semi-invariant submanifolds of generalized quasi-Sasakian manifolds
In the present paper, we study a new class of submanifolds of a generalized Quasi-Sasakian manifold, called skew semi-invariant submanifold. We obtain integrability conditions of the distributions on a skew semi-invariant submanifold and also find the condition for a skew semi-invariant submanifold...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vasyl Stefanyk Precarpathian National University
2018-01-01
|
Series: | Karpatsʹkì Matematičnì Publìkacìï |
Subjects: | |
Online Access: | https://journals.pnu.edu.ua/index.php/cmp/article/view/1463 |
Summary: | In the present paper, we study a new class of submanifolds of a generalized Quasi-Sasakian manifold, called skew semi-invariant submanifold. We obtain integrability conditions of the distributions on a skew semi-invariant submanifold and also find the condition for a skew semi-invariant submanifold of a generalized Quasi-Sasakian manifold to be mixed totally geodesic. Also it is shown that a skew semi-invariant submanifold of a generalized Quasi-Sasakian manifold will be anti-invariant if and only if $A_{\xi}=0$; and the submanifold will be skew semi-invariant submanifold if $\nabla w=0$. The equivalence relations for the skew semi-invariant submanifold of a generalized Quasi-Sasakian manifold are given. Furthermore, we have proved that a skew semi-invariant $\xi^\perp$-submanifold of a normal almost contact metric manifold and a generalized Quasi-Sasakian manifold with non-trivial invariant distribution is $CR$-manifold. An example of dimension 5 is given to show that a skew semi-invariant $\xi^\perp$ submanifold is a $CR$-structure on the manifold. |
---|---|
ISSN: | 2075-9827 2313-0210 |