Unsteadiness of Tip Leakage Flow in the Detached-Eddy Simulation on a Transonic Rotor with Vortex Breakdown Phenomenon

Tip leakage vortex (TLV) in a transonic compressor rotor was investigated numerically using detached-eddy simulation (DES) method at different working conditions. Strong unsteadiness was found at the tip region, causing a considerable fluctuation in total pressure distribution and flow angle distrib...

Full description

Bibliographic Details
Main Authors: Xiangyu Su, Xiaodong Ren, Xuesong Li, Chunwei Gu
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/12/5/954
Description
Summary:Tip leakage vortex (TLV) in a transonic compressor rotor was investigated numerically using detached-eddy simulation (DES) method at different working conditions. Strong unsteadiness was found at the tip region, causing a considerable fluctuation in total pressure distribution and flow angle distribution above 80% span. The unsteadiness at near choke point and peak efficiency point is not obvious. DES method can resolve more detailed flow patterns than RANS (Reynolds-averaged Navier–Stokes) results, and detailed structures of the tip leakage flow were captured. A spiral-type breakdown structure of the TLV was successfully observed at the near stall point when the TLV passed through the bow shock. The breakdown of TLV contributed to the unsteadiness and the blockage effect at the tip region.
ISSN:1996-1073