Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions
Abstract Background Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to a number of problems. Therefore, additional research is needed to alleviate them. Results Results o...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-06-01
|
Series: | BMC Plant Biology |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12870-020-02469-2 |
_version_ | 1818496180624031744 |
---|---|
author | Elena O. Vidyagina Natalia M. Subbotina Vladimir A. Belyi Vadim G. Lebedev Konstantin V. Krutovsky Konstantin A. Shestibratov |
author_facet | Elena O. Vidyagina Natalia M. Subbotina Vladimir A. Belyi Vadim G. Lebedev Konstantin V. Krutovsky Konstantin A. Shestibratov |
author_sort | Elena O. Vidyagina |
collection | DOAJ |
description | Abstract Background Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to a number of problems. Therefore, additional research is needed to alleviate them. Results Results of successful cultivation of the transgenic aspens (Populus tremula) carrying the recombinant xyloglucanase gene (sp-Xeg) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. Conclusion A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more pronounced were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness, and a decrease in the rate of decomposition of wood were observed. |
first_indexed | 2024-12-10T18:30:04Z |
format | Article |
id | doaj.art-079063f0e44a46ef99d8074382c23a1a |
institution | Directory Open Access Journal |
issn | 1471-2229 |
language | English |
last_indexed | 2024-12-10T18:30:04Z |
publishDate | 2020-06-01 |
publisher | BMC |
record_format | Article |
series | BMC Plant Biology |
spelling | doaj.art-079063f0e44a46ef99d8074382c23a1a2022-12-22T01:37:58ZengBMCBMC Plant Biology1471-22292020-06-0120111410.1186/s12870-020-02469-2Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditionsElena O. Vidyagina0Natalia M. Subbotina1Vladimir A. Belyi2Vadim G. Lebedev3Konstantin V. Krutovsky4Konstantin A. Shestibratov5Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesBranch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesInstitute of Сhemistry, Komi Science Centre, Urals Branch of the Russian Academy of SciencesBranch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesDepartment of Forest Genetics and Forest Tree Breeding, George-August University of GöttingenBranch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesAbstract Background Recombinant carbohydrases genes are used to produce transgenic woody plants with improved phenotypic traits. However, cultivation of such plants in open field is challenging due to a number of problems. Therefore, additional research is needed to alleviate them. Results Results of successful cultivation of the transgenic aspens (Populus tremula) carrying the recombinant xyloglucanase gene (sp-Xeg) from Penicillium canescens in semi-natural conditions are reported in this paper for the first time. Change of carbohydrate composition of wood was observed in transgenic aspens carrying the sp-Xeg gene. The transformed transgenic line Xeg-2-1b demonstrated accelerated growth and increased content of cellulose in wood of trees growing in both greenhouse and outside in comparison with the control untransformed line Pt. The accelerated growth was observed also in the transgenic line Xeg-1-1c. Thicker cell-wall and longer xylem fiber were also observed in both these transgenic lines. Undescribed earlier considerable reduction in the wood decomposition rate of the transgenic aspen stems was also revealed for the transformed transgenic lines. The decomposition rate was approximately twice as lower for the transgenic line Xeg-2-3b in comparison with the control untransformed line Pt. Conclusion A direct dependence of the phenotypic and biochemical traits on the expression of the recombinant gene sp-Xeg was demonstrated. The higher was the level of the sp-Xeg gene expression, the more pronounced were changes in the phenotypic and biochemical traits. All lines showed phenotypic changes in the leave traits. Our results showed that the plants carrying the recombinant sp-Xeg gene do not demonstrate a decrease in growth parameters in semi-natural conditions. In some transgenic lines, a change in the carbohydrate composition of the wood, an increase in the cell wall thickness, and a decrease in the rate of decomposition of wood were observed.http://link.springer.com/article/10.1186/s12870-020-02469-2AspenGene expression levelXyloglucanasePenicillium canescensPopulus tremulaTransgenic |
spellingShingle | Elena O. Vidyagina Natalia M. Subbotina Vladimir A. Belyi Vadim G. Lebedev Konstantin V. Krutovsky Konstantin A. Shestibratov Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions BMC Plant Biology Aspen Gene expression level Xyloglucanase Penicillium canescens Populus tremula Transgenic |
title | Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions |
title_full | Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions |
title_fullStr | Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions |
title_full_unstemmed | Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions |
title_short | Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions |
title_sort | various effects of the expression of the xyloglucanase gene from penicillium canescens in transgenic aspen under semi natural conditions |
topic | Aspen Gene expression level Xyloglucanase Penicillium canescens Populus tremula Transgenic |
url | http://link.springer.com/article/10.1186/s12870-020-02469-2 |
work_keys_str_mv | AT elenaovidyagina variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions AT nataliamsubbotina variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions AT vladimirabelyi variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions AT vadimglebedev variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions AT konstantinvkrutovsky variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions AT konstantinashestibratov variouseffectsoftheexpressionofthexyloglucanasegenefrompenicilliumcanescensintransgenicaspenunderseminaturalconditions |