Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching
<p>Abstract</p> <p>Background</p> <p>Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and re...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2009-11-01
|
Series: | BMC Medical Informatics and Decision Making |
Online Access: | http://www.biomedcentral.com/content/pdf/1472-6947-9-S1-info.pdf |
_version_ | 1818753229881606144 |
---|---|
author | Ward Kevin R Ji Soo-Yeon Smith Rebecca Chen Wenan Najarian Kayvan |
author_facet | Ward Kevin R Ji Soo-Yeon Smith Rebecca Chen Wenan Najarian Kayvan |
author_sort | Ward Kevin R |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information.</p> <p>Methods</p> <p>First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases.</p> <p>Results</p> <p>Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images.</p> <p>Conclusion</p> <p>The experiments show the reliability of the proposed algorithms. The novelty of the proposed method lies in its incorporation of anatomical features for ideal midline detection and the two-step ventricle segmentation method. Our method offers the following improvements over existing approaches: accurate detection of the ideal midline and accurate recognition of ventricles using both anatomical features and spatial templates derived from Magnetic Resonance Images.</p> |
first_indexed | 2024-12-18T05:04:03Z |
format | Article |
id | doaj.art-07957fae5cd74a17aafa9fa5b7b85301 |
institution | Directory Open Access Journal |
issn | 1472-6947 |
language | English |
last_indexed | 2024-12-18T05:04:03Z |
publishDate | 2009-11-01 |
publisher | BMC |
record_format | Article |
series | BMC Medical Informatics and Decision Making |
spelling | doaj.art-07957fae5cd74a17aafa9fa5b7b853012022-12-21T21:20:04ZengBMCBMC Medical Informatics and Decision Making1472-69472009-11-019Suppl 1S410.1186/1472-6947-9-S1-S4Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matchingWard Kevin RJi Soo-YeonSmith RebeccaChen WenanNajarian Kayvan<p>Abstract</p> <p>Background</p> <p>Accurate analysis of CT brain scans is vital for diagnosis and treatment of Traumatic Brain Injuries (TBI). Automatic processing of these CT brain scans could speed up the decision making process, lower the cost of healthcare, and reduce the chance of human error. In this paper, we focus on automatic processing of CT brain images to segment and identify the ventricular systems. The segmentation of ventricles provides quantitative measures on the changes of ventricles in the brain that form vital diagnosis information.</p> <p>Methods</p> <p>First all CT slices are aligned by detecting the ideal midlines in all images. The initial estimation of the ideal midline of the brain is found based on skull symmetry and then the initial estimate is further refined using detected anatomical features. Then a two-step method is used for ventricle segmentation. First a low-level segmentation on each pixel is applied on the CT images. For this step, both Iterated Conditional Mode (ICM) and Maximum A Posteriori Spatial Probability (MASP) are evaluated and compared. The second step applies template matching algorithm to identify objects in the initial low-level segmentation as ventricles. Experiments for ventricle segmentation are conducted using a relatively large CT dataset containing mild and severe TBI cases.</p> <p>Results</p> <p>Experiments show that the acceptable rate of the ideal midline detection is over 95%. Two measurements are defined to evaluate ventricle recognition results. The first measure is a sensitivity-like measure and the second is a false positive-like measure. For the first measurement, the rate is 100% indicating that all ventricles are identified in all slices. The false positives-like measurement is 8.59%. We also point out the similarities and differences between ICM and MASP algorithms through both mathematically relationships and segmentation results on CT images.</p> <p>Conclusion</p> <p>The experiments show the reliability of the proposed algorithms. The novelty of the proposed method lies in its incorporation of anatomical features for ideal midline detection and the two-step ventricle segmentation method. Our method offers the following improvements over existing approaches: accurate detection of the ideal midline and accurate recognition of ventricles using both anatomical features and spatial templates derived from Magnetic Resonance Images.</p>http://www.biomedcentral.com/content/pdf/1472-6947-9-S1-info.pdf |
spellingShingle | Ward Kevin R Ji Soo-Yeon Smith Rebecca Chen Wenan Najarian Kayvan Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching BMC Medical Informatics and Decision Making |
title | Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching |
title_full | Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching |
title_fullStr | Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching |
title_full_unstemmed | Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching |
title_short | Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching |
title_sort | automated ventricular systems segmentation in brain ct images by combining low level segmentation and high level template matching |
url | http://www.biomedcentral.com/content/pdf/1472-6947-9-S1-info.pdf |
work_keys_str_mv | AT wardkevinr automatedventricularsystemssegmentationinbrainctimagesbycombininglowlevelsegmentationandhighleveltemplatematching AT jisooyeon automatedventricularsystemssegmentationinbrainctimagesbycombininglowlevelsegmentationandhighleveltemplatematching AT smithrebecca automatedventricularsystemssegmentationinbrainctimagesbycombininglowlevelsegmentationandhighleveltemplatematching AT chenwenan automatedventricularsystemssegmentationinbrainctimagesbycombininglowlevelsegmentationandhighleveltemplatematching AT najariankayvan automatedventricularsystemssegmentationinbrainctimagesbycombininglowlevelsegmentationandhighleveltemplatematching |