Lim Ulrich sequences and Boij-Söderberg cones
This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is t...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2023-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article |
_version_ | 1797387707963408384 |
---|---|
author | Srikanth B. Iyengar Linquan Ma Mark E. Walker |
author_facet | Srikanth B. Iyengar Linquan Ma Mark E. Walker |
author_sort | Srikanth B. Iyengar |
collection | DOAJ |
description | This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings. |
first_indexed | 2024-03-08T22:28:57Z |
format | Article |
id | doaj.art-07958761227d456f89e7412fd4ecbfef |
institution | Directory Open Access Journal |
issn | 2050-5094 |
language | English |
last_indexed | 2024-03-08T22:28:57Z |
publishDate | 2023-01-01 |
publisher | Cambridge University Press |
record_format | Article |
series | Forum of Mathematics, Sigma |
spelling | doaj.art-07958761227d456f89e7412fd4ecbfef2023-12-18T06:45:32ZengCambridge University PressForum of Mathematics, Sigma2050-50942023-01-011110.1017/fms.2023.108Lim Ulrich sequences and Boij-Söderberg conesSrikanth B. Iyengar0https://orcid.org/0000-0001-7597-7068Linquan Ma1https://orcid.org/0000-0002-7452-8639Mark E. Walker2https://orcid.org/0000-0003-1604-5046Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, UT 84112, U.S.A.; E-mail:Department of Mathematics, Purdue University, 150 N. University street, W. Lafayette, IN 47907, U.S.A.; E-mail:Department of Mathematics, University of Nebraska, 210 Avery Hall, 1144 T St, Lincoln, NE 68588, U.S.A.; E-mail:This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article13D0213A3513C1414F06 |
spellingShingle | Srikanth B. Iyengar Linquan Ma Mark E. Walker Lim Ulrich sequences and Boij-Söderberg cones Forum of Mathematics, Sigma 13D02 13A35 13C14 14F06 |
title | Lim Ulrich sequences and Boij-Söderberg cones |
title_full | Lim Ulrich sequences and Boij-Söderberg cones |
title_fullStr | Lim Ulrich sequences and Boij-Söderberg cones |
title_full_unstemmed | Lim Ulrich sequences and Boij-Söderberg cones |
title_short | Lim Ulrich sequences and Boij-Söderberg cones |
title_sort | lim ulrich sequences and boij soderberg cones |
topic | 13D02 13A35 13C14 14F06 |
url | https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article |
work_keys_str_mv | AT srikanthbiyengar limulrichsequencesandboijsoderbergcones AT linquanma limulrichsequencesandboijsoderbergcones AT markewalker limulrichsequencesandboijsoderbergcones |