Lim Ulrich sequences and Boij-Söderberg cones

This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is t...

Full description

Bibliographic Details
Main Authors: Srikanth B. Iyengar, Linquan Ma, Mark E. Walker
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article
_version_ 1797387707963408384
author Srikanth B. Iyengar
Linquan Ma
Mark E. Walker
author_facet Srikanth B. Iyengar
Linquan Ma
Mark E. Walker
author_sort Srikanth B. Iyengar
collection DOAJ
description This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.
first_indexed 2024-03-08T22:28:57Z
format Article
id doaj.art-07958761227d456f89e7412fd4ecbfef
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-03-08T22:28:57Z
publishDate 2023-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-07958761227d456f89e7412fd4ecbfef2023-12-18T06:45:32ZengCambridge University PressForum of Mathematics, Sigma2050-50942023-01-011110.1017/fms.2023.108Lim Ulrich sequences and Boij-Söderberg conesSrikanth B. Iyengar0https://orcid.org/0000-0001-7597-7068Linquan Ma1https://orcid.org/0000-0002-7452-8639Mark E. Walker2https://orcid.org/0000-0003-1604-5046Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, UT 84112, U.S.A.; E-mail:Department of Mathematics, Purdue University, 150 N. University street, W. Lafayette, IN 47907, U.S.A.; E-mail:Department of Mathematics, University of Nebraska, 210 Avery Hall, 1144 T St, Lincoln, NE 68588, U.S.A.; E-mail:This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article13D0213A3513C1414F06
spellingShingle Srikanth B. Iyengar
Linquan Ma
Mark E. Walker
Lim Ulrich sequences and Boij-Söderberg cones
Forum of Mathematics, Sigma
13D02
13A35
13C14
14F06
title Lim Ulrich sequences and Boij-Söderberg cones
title_full Lim Ulrich sequences and Boij-Söderberg cones
title_fullStr Lim Ulrich sequences and Boij-Söderberg cones
title_full_unstemmed Lim Ulrich sequences and Boij-Söderberg cones
title_short Lim Ulrich sequences and Boij-Söderberg cones
title_sort lim ulrich sequences and boij soderberg cones
topic 13D02
13A35
13C14
14F06
url https://www.cambridge.org/core/product/identifier/S2050509423001081/type/journal_article
work_keys_str_mv AT srikanthbiyengar limulrichsequencesandboijsoderbergcones
AT linquanma limulrichsequencesandboijsoderbergcones
AT markewalker limulrichsequencesandboijsoderbergcones