Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway.
Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3400665?pdf=render |
_version_ | 1818065583422308352 |
---|---|
author | Huijuan Guo Yucheng Sun Qin Ren Keyan Zhu-Salzman Le Kang Chenzhu Wang Chuanyou Li Feng Ge |
author_facet | Huijuan Guo Yucheng Sun Qin Ren Keyan Zhu-Salzman Le Kang Chenzhu Wang Chuanyou Li Feng Ge |
author_sort | Huijuan Guo |
collection | DOAJ |
description | Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2) reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2). Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO(2). Under ambient CO(2), the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO(2) reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2) will simultaneously reduce the resistance and tolerance of tomato plants. |
first_indexed | 2024-12-10T14:54:12Z |
format | Article |
id | doaj.art-07a560e947b94f81b2f6a3a2339f6d68 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-10T14:54:12Z |
publishDate | 2012-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-07a560e947b94f81b2f6a3a2339f6d682022-12-22T01:44:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0177e4142610.1371/journal.pone.0041426Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway.Huijuan GuoYucheng SunQin RenKeyan Zhu-SalzmanLe KangChenzhu WangChuanyou LiFeng GeBoth resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO(2) levels. We tested the hypothesis that elevated CO(2) would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO(2) reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO(2). Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO(2). Under ambient CO(2), the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO(2) reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO(2) will simultaneously reduce the resistance and tolerance of tomato plants.http://europepmc.org/articles/PMC3400665?pdf=render |
spellingShingle | Huijuan Guo Yucheng Sun Qin Ren Keyan Zhu-Salzman Le Kang Chenzhu Wang Chuanyou Li Feng Ge Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. PLoS ONE |
title | Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. |
title_full | Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. |
title_fullStr | Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. |
title_full_unstemmed | Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. |
title_short | Elevated CO2 reduces the resistance and tolerance of tomato plants to Helicoverpa armigera by suppressing the JA signaling pathway. |
title_sort | elevated co2 reduces the resistance and tolerance of tomato plants to helicoverpa armigera by suppressing the ja signaling pathway |
url | http://europepmc.org/articles/PMC3400665?pdf=render |
work_keys_str_mv | AT huijuanguo elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT yuchengsun elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT qinren elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT keyanzhusalzman elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT lekang elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT chenzhuwang elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT chuanyouli elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway AT fengge elevatedco2reducestheresistanceandtoleranceoftomatoplantstohelicoverpaarmigerabysuppressingthejasignalingpathway |