Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System
Abstract Vibration measurement systems containing sensors, signal conditioning, and data acquisition devices, are important for monitoring motors, gearboxes, turbines, etc. Microelectromechanical and piezoelectric sensors are predominantly used for vibration measurements. However, they are not cost‐...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2023-06-01
|
Series: | Advanced Electronic Materials |
Subjects: | |
Online Access: | https://doi.org/10.1002/aelm.202300111 |
_version_ | 1797672121445384192 |
---|---|
author | Idiris Mehamud Marcus Björling Pär Marklund Yijun Shi |
author_facet | Idiris Mehamud Marcus Björling Pär Marklund Yijun Shi |
author_sort | Idiris Mehamud |
collection | DOAJ |
description | Abstract Vibration measurement systems containing sensors, signal conditioning, and data acquisition devices, are important for monitoring motors, gearboxes, turbines, etc. Microelectromechanical and piezoelectric sensors are predominantly used for vibration measurements. However, they are not cost‐effective, flexible in design, and incapable of self‐powering. Recently, triboelectric nano‐generator (TENG)‐based vibration sensors have been considered as a possible alternative to resolve this problem, and tremendous progress has been achieved. Previous work on TENG‐based sensors is limited to optimizing the sensor design, while the signal conditioning and data acquisition of TENG signal still need investigation for actual applications. This work develops a TENG‐based vibration measurement device and self‐powered alerting system that is integrated with the signal condition and data acquisition systems. The experimental results show that the proposed measurement system successfully measures signals within the range of 0–1800 Hz frequency. Meanwhile, the TENG generates a high output, up to 80 V and 0.55 µA from small size TENG area (3.6 cm2). The signal is adequate to harvest energy for self‐powering to drive alerting components (harvest 320 mJ in 36 h, which drives alarming for duration of 1.5 s). The proposed device is cost‐effective (30 $), small (105 cm3), and consumes less power (0.18 W) in comparison to commercial devices. |
first_indexed | 2024-03-11T21:25:32Z |
format | Article |
id | doaj.art-07addc46bd624d078120d18b635790c8 |
institution | Directory Open Access Journal |
issn | 2199-160X |
language | English |
last_indexed | 2024-03-11T21:25:32Z |
publishDate | 2023-06-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Electronic Materials |
spelling | doaj.art-07addc46bd624d078120d18b635790c82023-09-28T04:47:42ZengWiley-VCHAdvanced Electronic Materials2199-160X2023-06-0196n/an/a10.1002/aelm.202300111Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting SystemIdiris Mehamud0Marcus Björling1Pär Marklund2Yijun Shi3Division of Machine Elements Luleå University of Technology Luleå SE‐971 87 SwedenDivision of Machine Elements Luleå University of Technology Luleå SE‐971 87 SwedenDivision of Machine Elements Luleå University of Technology Luleå SE‐971 87 SwedenDivision of Machine Elements Luleå University of Technology Luleå SE‐971 87 SwedenAbstract Vibration measurement systems containing sensors, signal conditioning, and data acquisition devices, are important for monitoring motors, gearboxes, turbines, etc. Microelectromechanical and piezoelectric sensors are predominantly used for vibration measurements. However, they are not cost‐effective, flexible in design, and incapable of self‐powering. Recently, triboelectric nano‐generator (TENG)‐based vibration sensors have been considered as a possible alternative to resolve this problem, and tremendous progress has been achieved. Previous work on TENG‐based sensors is limited to optimizing the sensor design, while the signal conditioning and data acquisition of TENG signal still need investigation for actual applications. This work develops a TENG‐based vibration measurement device and self‐powered alerting system that is integrated with the signal condition and data acquisition systems. The experimental results show that the proposed measurement system successfully measures signals within the range of 0–1800 Hz frequency. Meanwhile, the TENG generates a high output, up to 80 V and 0.55 µA from small size TENG area (3.6 cm2). The signal is adequate to harvest energy for self‐powering to drive alerting components (harvest 320 mJ in 36 h, which drives alarming for duration of 1.5 s). The proposed device is cost‐effective (30 $), small (105 cm3), and consumes less power (0.18 W) in comparison to commercial devices.https://doi.org/10.1002/aelm.202300111energy harvestingself‐poweredtriboelectric nanogeneratorsvibrations |
spellingShingle | Idiris Mehamud Marcus Björling Pär Marklund Yijun Shi Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System Advanced Electronic Materials energy harvesting self‐powered triboelectric nanogenerators vibrations |
title | Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System |
title_full | Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System |
title_fullStr | Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System |
title_full_unstemmed | Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System |
title_short | Small Size and Low‐Cost TENG‐Based Self‐Powered Vibration Measuring and Alerting System |
title_sort | small size and low cost teng based self powered vibration measuring and alerting system |
topic | energy harvesting self‐powered triboelectric nanogenerators vibrations |
url | https://doi.org/10.1002/aelm.202300111 |
work_keys_str_mv | AT idirismehamud smallsizeandlowcosttengbasedselfpoweredvibrationmeasuringandalertingsystem AT marcusbjorling smallsizeandlowcosttengbasedselfpoweredvibrationmeasuringandalertingsystem AT parmarklund smallsizeandlowcosttengbasedselfpoweredvibrationmeasuringandalertingsystem AT yijunshi smallsizeandlowcosttengbasedselfpoweredvibrationmeasuringandalertingsystem |