Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study

Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscilla...

Full description

Bibliographic Details
Main Authors: Marcel Aguilella-Arzo, María Queralt-Martín, María-Lidón Lopez, Antonio Alcaraz
Format: Article
Language:English
Published: MDPI AG 2017-03-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/19/3/116
_version_ 1798003596080447488
author Marcel Aguilella-Arzo
María Queralt-Martín
María-Lidón Lopez
Antonio Alcaraz
author_facet Marcel Aguilella-Arzo
María Queralt-Martín
María-Lidón Lopez
Antonio Alcaraz
author_sort Marcel Aguilella-Arzo
collection DOAJ
description Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise).
first_indexed 2024-04-11T12:10:14Z
format Article
id doaj.art-07ae7a80829c48a6b76b5ae7f509cfff
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-11T12:10:14Z
publishDate 2017-03-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-07ae7a80829c48a6b76b5ae7f509cfff2022-12-22T04:24:38ZengMDPI AGEntropy1099-43002017-03-0119311610.3390/e19030116e19030116Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck StudyMarcel Aguilella-Arzo0María Queralt-Martín1María-Lidón Lopez2Antonio Alcaraz3Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón, SpainLaboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón, SpainLaboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón, SpainLaboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón, SpainLiving systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise).http://www.mdpi.com/1099-4300/19/3/116non-equilibrium fluctuationsion transportbiological channelelectrodiffusioncomputational biophysics
spellingShingle Marcel Aguilella-Arzo
María Queralt-Martín
María-Lidón Lopez
Antonio Alcaraz
Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
Entropy
non-equilibrium fluctuations
ion transport
biological channel
electrodiffusion
computational biophysics
title Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
title_full Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
title_fullStr Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
title_full_unstemmed Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
title_short Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study
title_sort fluctuation driven transport in biological nanopores a 3d poisson nernst planck study
topic non-equilibrium fluctuations
ion transport
biological channel
electrodiffusion
computational biophysics
url http://www.mdpi.com/1099-4300/19/3/116
work_keys_str_mv AT marcelaguilellaarzo fluctuationdriventransportinbiologicalnanoporesa3dpoissonnernstplanckstudy
AT mariaqueraltmartin fluctuationdriventransportinbiologicalnanoporesa3dpoissonnernstplanckstudy
AT marialidonlopez fluctuationdriventransportinbiologicalnanoporesa3dpoissonnernstplanckstudy
AT antonioalcaraz fluctuationdriventransportinbiologicalnanoporesa3dpoissonnernstplanckstudy