An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations

<p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</sp...

Full description

Bibliographic Details
Main Authors: K. Sun, M. Yousefi, C. Chan Miller, K. Chance, G. González Abad, I. E. Gordon, X. Liu, E. O'Sullivan, C. E. Sioris, S. C. Wofsy
Format: Article
Language:English
Published: Copernicus Publications 2022-06-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf
_version_ 1818550042840006656
author K. Sun
K. Sun
M. Yousefi
C. Chan Miller
C. Chan Miller
C. Chan Miller
K. Chance
G. González Abad
I. E. Gordon
X. Liu
E. O'Sullivan
C. E. Sioris
S. C. Wofsy
S. C. Wofsy
author_facet K. Sun
K. Sun
M. Yousefi
C. Chan Miller
C. Chan Miller
C. Chan Miller
K. Chance
G. González Abad
I. E. Gordon
X. Liu
E. O'Sullivan
C. E. Sioris
S. C. Wofsy
S. C. Wofsy
author_sort K. Sun
collection DOAJ
description <p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</span>m (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e23f4f729858696de5562ade75bd55ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00001.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00001.png"/></svg:svg></span></span> or <span class="inline-formula"><i>A</i></span> band) and 1.27 <span class="inline-formula">µ</span>m (<span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> or <span class="inline-formula"><sup>1</sup>Δ</span> band) in the upper atmosphere. Both oxygen bands are important for the remote sensing of greenhouse gases. The algorithm is applied to the limb spectra observed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument in both the nominal (tangent heights below <span class="inline-formula">∼</span> 90 km) and mesosphere–lower thermosphere (MLT) modes (tangent heights spanning 50–150 km). The number densities of emitting O<span class="inline-formula"><sub>2</sub></span> in the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band are retrieved in an altitude range of 25–100 km near-daily in 2010, providing a climatology of O<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission. This climatology will help disentangle the airglow from backscattered light in nadir remote sensing of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band. The global monthly distributions of the vertical column density of emitting O<span class="inline-formula"><sub>2</sub></span> in <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> state show mainly latitudinal dependence without other discernible geographical patterns. Temperature profiles are retrieved simultaneously from the spectral shapes of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission in the nominal limb mode (valid altitude range of 40–100 km) and from both <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>- and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="11467d6e86e83b59d143f98a0818d72e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00002.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00002.png"/></svg:svg></span></span>-band airglow emissions in the MLT mode (valid range of 60–105 km). The temperature retrievals from both airglow bands are consistent internally and in agreement with independent observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), with the absolute mean bias near or below 5 K and root mean squared error (RMSE) near or below 10 K. The retrieved emitting O<span class="inline-formula"><sub>2</sub></span> number density and temperature provide a unique dataset for the remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.</p>
first_indexed 2024-12-12T08:41:11Z
format Article
id doaj.art-07b2d3cfc7704121ad11fc6ddf1fb2c5
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-12-12T08:41:11Z
publishDate 2022-06-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-07b2d3cfc7704121ad11fc6ddf1fb2c52022-12-22T00:30:47ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-06-01153721374510.5194/amt-15-3721-2022An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observationsK. Sun0K. Sun1M. Yousefi2C. Chan Miller3C. Chan Miller4C. Chan Miller5K. Chance6G. González Abad7I. E. Gordon8X. Liu9E. O'Sullivan10C. E. Sioris11S. C. Wofsy12S. C. Wofsy13Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USAResearch and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, USADepartment of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USAClimate Change Research Center, University of New South Wales, Sydney, New South Wales, AustraliaHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USAAir Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, CanadaHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA<p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</span>m (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e23f4f729858696de5562ade75bd55ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00001.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00001.png"/></svg:svg></span></span> or <span class="inline-formula"><i>A</i></span> band) and 1.27 <span class="inline-formula">µ</span>m (<span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> or <span class="inline-formula"><sup>1</sup>Δ</span> band) in the upper atmosphere. Both oxygen bands are important for the remote sensing of greenhouse gases. The algorithm is applied to the limb spectra observed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument in both the nominal (tangent heights below <span class="inline-formula">∼</span> 90 km) and mesosphere–lower thermosphere (MLT) modes (tangent heights spanning 50–150 km). The number densities of emitting O<span class="inline-formula"><sub>2</sub></span> in the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band are retrieved in an altitude range of 25–100 km near-daily in 2010, providing a climatology of O<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission. This climatology will help disentangle the airglow from backscattered light in nadir remote sensing of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band. The global monthly distributions of the vertical column density of emitting O<span class="inline-formula"><sub>2</sub></span> in <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> state show mainly latitudinal dependence without other discernible geographical patterns. Temperature profiles are retrieved simultaneously from the spectral shapes of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission in the nominal limb mode (valid altitude range of 40–100 km) and from both <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>- and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="11467d6e86e83b59d143f98a0818d72e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00002.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00002.png"/></svg:svg></span></span>-band airglow emissions in the MLT mode (valid range of 60–105 km). The temperature retrievals from both airglow bands are consistent internally and in agreement with independent observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), with the absolute mean bias near or below 5 K and root mean squared error (RMSE) near or below 10 K. The retrieved emitting O<span class="inline-formula"><sub>2</sub></span> number density and temperature provide a unique dataset for the remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.</p>https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf
spellingShingle K. Sun
K. Sun
M. Yousefi
C. Chan Miller
C. Chan Miller
C. Chan Miller
K. Chance
G. González Abad
I. E. Gordon
X. Liu
E. O'Sullivan
C. E. Sioris
S. C. Wofsy
S. C. Wofsy
An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
Atmospheric Measurement Techniques
title An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
title_full An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
title_fullStr An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
title_full_unstemmed An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
title_short An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
title_sort optimal estimation based retrieval of upper atmospheric oxygen airglow and temperature from sciamachy limb observations
url https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf
work_keys_str_mv AT ksun anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT ksun anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT myousefi anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT kchance anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT ggonzalezabad anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT iegordon anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT xliu anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT eosullivan anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cesioris anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT scwofsy anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT scwofsy anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT ksun optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT ksun optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT myousefi optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT kchance optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT ggonzalezabad optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT iegordon optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT xliu optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT eosullivan optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT cesioris optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT scwofsy optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations
AT scwofsy optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations