An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations
<p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</sp...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-06-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf |
_version_ | 1818550042840006656 |
---|---|
author | K. Sun K. Sun M. Yousefi C. Chan Miller C. Chan Miller C. Chan Miller K. Chance G. González Abad I. E. Gordon X. Liu E. O'Sullivan C. E. Sioris S. C. Wofsy S. C. Wofsy |
author_facet | K. Sun K. Sun M. Yousefi C. Chan Miller C. Chan Miller C. Chan Miller K. Chance G. González Abad I. E. Gordon X. Liu E. O'Sullivan C. E. Sioris S. C. Wofsy S. C. Wofsy |
author_sort | K. Sun |
collection | DOAJ |
description | <p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</span>m (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e23f4f729858696de5562ade75bd55ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00001.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00001.png"/></svg:svg></span></span> or <span class="inline-formula"><i>A</i></span> band) and 1.27 <span class="inline-formula">µ</span>m (<span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> or <span class="inline-formula"><sup>1</sup>Δ</span> band) in the upper atmosphere. Both oxygen bands are important for the remote sensing of greenhouse gases. The algorithm is applied to the limb spectra observed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument in both the nominal (tangent heights below <span class="inline-formula">∼</span> 90 km) and mesosphere–lower thermosphere (MLT) modes (tangent heights spanning 50–150 km). The number densities of emitting O<span class="inline-formula"><sub>2</sub></span> in the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band are retrieved in an altitude range of 25–100 km near-daily in 2010, providing a climatology of O<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission. This climatology will help disentangle the airglow from backscattered light in nadir remote sensing of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band. The global monthly distributions of the vertical column density of emitting O<span class="inline-formula"><sub>2</sub></span> in <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> state show mainly latitudinal dependence without other discernible geographical patterns. Temperature profiles are retrieved simultaneously from the spectral shapes of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission in the nominal limb mode (valid altitude range of 40–100 km) and from both <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>- and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="11467d6e86e83b59d143f98a0818d72e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00002.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00002.png"/></svg:svg></span></span>-band airglow emissions in the MLT mode (valid range of 60–105 km). The temperature retrievals from both airglow bands are consistent internally and in agreement with independent observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), with the absolute mean bias near or below 5 K and root mean squared error (RMSE) near or below 10 K. The retrieved emitting O<span class="inline-formula"><sub>2</sub></span> number density and temperature provide a unique dataset for the remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.</p> |
first_indexed | 2024-12-12T08:41:11Z |
format | Article |
id | doaj.art-07b2d3cfc7704121ad11fc6ddf1fb2c5 |
institution | Directory Open Access Journal |
issn | 1867-1381 1867-8548 |
language | English |
last_indexed | 2024-12-12T08:41:11Z |
publishDate | 2022-06-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Measurement Techniques |
spelling | doaj.art-07b2d3cfc7704121ad11fc6ddf1fb2c52022-12-22T00:30:47ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-06-01153721374510.5194/amt-15-3721-2022An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observationsK. Sun0K. Sun1M. Yousefi2C. Chan Miller3C. Chan Miller4C. Chan Miller5K. Chance6G. González Abad7I. E. Gordon8X. Liu9E. O'Sullivan10C. E. Sioris11S. C. Wofsy12S. C. Wofsy13Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USAResearch and Education in Energy, Environment and Water Institute, University at Buffalo, Buffalo, NY, USADepartment of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USAClimate Change Research Center, University of New South Wales, Sydney, New South Wales, AustraliaHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USACenter for Astrophysics, Harvard & Smithsonian, Cambridge, MA, USAAir Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, CanadaHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA<p>An optimal estimation-based algorithm is developed to retrieve the number density of excited oxygen (O<span class="inline-formula"><sub>2</sub></span>) molecules that generate airglow emissions near 0.76 <span class="inline-formula">µ</span>m (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="e23f4f729858696de5562ade75bd55ba"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00001.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00001.png"/></svg:svg></span></span> or <span class="inline-formula"><i>A</i></span> band) and 1.27 <span class="inline-formula">µ</span>m (<span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> or <span class="inline-formula"><sup>1</sup>Δ</span> band) in the upper atmosphere. Both oxygen bands are important for the remote sensing of greenhouse gases. The algorithm is applied to the limb spectra observed by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument in both the nominal (tangent heights below <span class="inline-formula">∼</span> 90 km) and mesosphere–lower thermosphere (MLT) modes (tangent heights spanning 50–150 km). The number densities of emitting O<span class="inline-formula"><sub>2</sub></span> in the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band are retrieved in an altitude range of 25–100 km near-daily in 2010, providing a climatology of O<span class="inline-formula"><sub>2</sub></span> <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission. This climatology will help disentangle the airglow from backscattered light in nadir remote sensing of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> band. The global monthly distributions of the vertical column density of emitting O<span class="inline-formula"><sub>2</sub></span> in <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span> state show mainly latitudinal dependence without other discernible geographical patterns. Temperature profiles are retrieved simultaneously from the spectral shapes of the <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>-band airglow emission in the nominal limb mode (valid altitude range of 40–100 km) and from both <span class="inline-formula"><i>a</i><sup>1</sup>Δ<sub>g</sub></span>- and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi>b</mi><mn mathvariant="normal">1</mn></msup><msubsup><mi mathvariant="normal">Σ</mi><mi mathvariant="normal">g</mi><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="11467d6e86e83b59d143f98a0818d72e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-15-3721-2022-ie00002.svg" width="26pt" height="17pt" src="amt-15-3721-2022-ie00002.png"/></svg:svg></span></span>-band airglow emissions in the MLT mode (valid range of 60–105 km). The temperature retrievals from both airglow bands are consistent internally and in agreement with independent observations from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), with the absolute mean bias near or below 5 K and root mean squared error (RMSE) near or below 10 K. The retrieved emitting O<span class="inline-formula"><sub>2</sub></span> number density and temperature provide a unique dataset for the remote sensing of greenhouse gases and constraining the chemical and physical processes in the upper atmosphere.</p>https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf |
spellingShingle | K. Sun K. Sun M. Yousefi C. Chan Miller C. Chan Miller C. Chan Miller K. Chance G. González Abad I. E. Gordon X. Liu E. O'Sullivan C. E. Sioris S. C. Wofsy S. C. Wofsy An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations Atmospheric Measurement Techniques |
title | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations |
title_full | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations |
title_fullStr | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations |
title_full_unstemmed | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations |
title_short | An optimal estimation-based retrieval of upper atmospheric oxygen airglow and temperature from SCIAMACHY limb observations |
title_sort | optimal estimation based retrieval of upper atmospheric oxygen airglow and temperature from sciamachy limb observations |
url | https://amt.copernicus.org/articles/15/3721/2022/amt-15-3721-2022.pdf |
work_keys_str_mv | AT ksun anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT ksun anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT myousefi anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT kchance anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT ggonzalezabad anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT iegordon anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT xliu anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT eosullivan anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cesioris anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT scwofsy anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT scwofsy anoptimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT ksun optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT ksun optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT myousefi optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cchanmiller optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT kchance optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT ggonzalezabad optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT iegordon optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT xliu optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT eosullivan optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT cesioris optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT scwofsy optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations AT scwofsy optimalestimationbasedretrievalofupperatmosphericoxygenairglowandtemperaturefromsciamachylimbobservations |