Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer

Abstract Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the envir...

Full description

Bibliographic Details
Main Authors: Chuanhui Huang, Xinglong Shang, Xinyuan Zhou, Zhe Zhang, Xing Huang, Yang Lu, Mingchao Wang, Markus Löffler, Zhongquan Liao, Haoyuan Qi, Ute Kaiser, Dana Schwarz, Andreas Fery, Tie Wang, Stefan C. B. Mannsfeld, Guoqing Hu, Xinliang Feng, Renhao Dong
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39630-y
_version_ 1797789679426207744
author Chuanhui Huang
Xinglong Shang
Xinyuan Zhou
Zhe Zhang
Xing Huang
Yang Lu
Mingchao Wang
Markus Löffler
Zhongquan Liao
Haoyuan Qi
Ute Kaiser
Dana Schwarz
Andreas Fery
Tie Wang
Stefan C. B. Mannsfeld
Guoqing Hu
Xinliang Feng
Renhao Dong
author_facet Chuanhui Huang
Xinglong Shang
Xinyuan Zhou
Zhe Zhang
Xing Huang
Yang Lu
Mingchao Wang
Markus Löffler
Zhongquan Liao
Haoyuan Qi
Ute Kaiser
Dana Schwarz
Andreas Fery
Tie Wang
Stefan C. B. Mannsfeld
Guoqing Hu
Xinliang Feng
Renhao Dong
author_sort Chuanhui Huang
collection DOAJ
description Abstract Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.
first_indexed 2024-03-13T01:54:06Z
format Article
id doaj.art-07b2e672093f40a0ba2cbbb793990e12
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-03-13T01:54:06Z
publishDate 2023-06-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-07b2e672093f40a0ba2cbbb793990e122023-07-02T11:20:34ZengNature PortfolioNature Communications2041-17232023-06-0114111010.1038/s41467-023-39630-yHierarchical conductive metal-organic framework films enabling efficient interfacial mass transferChuanhui Huang0Xinglong Shang1Xinyuan Zhou2Zhe Zhang3Xing Huang4Yang Lu5Mingchao Wang6Markus Löffler7Zhongquan Liao8Haoyuan Qi9Ute Kaiser10Dana Schwarz11Andreas Fery12Tie Wang13Stefan C. B. Mannsfeld14Guoqing Hu15Xinliang Feng16Renhao Dong17Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenDepartment of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang UniversityTianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of TechnologyCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenDresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität DresdenFraunhofer Institute for Ceramic Technologies and Systems (IKTS)Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenElectron Microscopy of Materials Science, Central Facility for Electron Microscopy Universität UlmLeibniz-Institut für Polymerforschung Dresden e.V. (IPF)Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenTianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of TechnologyCenter for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering, Technische Universität DresdenDepartment of Engineering Mechanics & State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang UniversityCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenCenter for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität DresdenAbstract Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.https://doi.org/10.1038/s41467-023-39630-y
spellingShingle Chuanhui Huang
Xinglong Shang
Xinyuan Zhou
Zhe Zhang
Xing Huang
Yang Lu
Mingchao Wang
Markus Löffler
Zhongquan Liao
Haoyuan Qi
Ute Kaiser
Dana Schwarz
Andreas Fery
Tie Wang
Stefan C. B. Mannsfeld
Guoqing Hu
Xinliang Feng
Renhao Dong
Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
Nature Communications
title Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
title_full Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
title_fullStr Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
title_full_unstemmed Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
title_short Hierarchical conductive metal-organic framework films enabling efficient interfacial mass transfer
title_sort hierarchical conductive metal organic framework films enabling efficient interfacial mass transfer
url https://doi.org/10.1038/s41467-023-39630-y
work_keys_str_mv AT chuanhuihuang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT xinglongshang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT xinyuanzhou hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT zhezhang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT xinghuang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT yanglu hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT mingchaowang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT markusloffler hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT zhongquanliao hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT haoyuanqi hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT utekaiser hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT danaschwarz hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT andreasfery hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT tiewang hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT stefancbmannsfeld hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT guoqinghu hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT xinliangfeng hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer
AT renhaodong hierarchicalconductivemetalorganicframeworkfilmsenablingefficientinterfacialmasstransfer