Generalisations of Fisher Matrices

Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, coverin...

Full description

Bibliographic Details
Main Author: Alan Heavens
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/18/6/236
Description
Summary:Fisher matrices play an important role in experimental design and in data analysis. Their primary role is to make predictions for the inference of model parameters—both their errors and covariances. In this short review, I outline a number of extensions to the simple Fisher matrix formalism, covering a number of recent developments in the field. These are: (a) situations where the data (in the form of ( x , y ) pairs) have errors in both x and y; (b) modifications to parameter inference in the presence of systematic errors, or through fixing the values of some model parameters; (c) Derivative Approximation for LIkelihoods (DALI) - higher-order expansions of the likelihood surface, going beyond the Gaussian shape approximation; (d) extensions of the Fisher-like formalism, to treat model selection problems with Bayesian evidence.
ISSN:1099-4300