Summary: | <p>Abstract</p> <p>Background</p> <p>Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. <it>Wolbachia </it>endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR) 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in <it>Wolbachia </it>lipoprotein biosynthesis are potential chemotherapeutic targets.</p> <p>Results</p> <p>Globomycin, a signal peptidase II (LspA) inhibitor, has activity against Gram-negative bacteria and a putative <it>lspA </it>gene has been identified from the <it>Wolbachia </it>genome of <it>Brugia malayi </it>(<it>w</it>Bm). The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive <it>Escherichia coli lspA </it>mutant. Also, transformation of wild type <it>E. coli </it>with <it>Wolbachia lspA </it>conferred significant globomycin resistance. A cell-based screen has been developed utilizing a <it>Wolbachia</it>-containing <it>Aedes albopictus </it>cell line to assay novel compounds active against <it>Wolbachia</it>. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in <it>Wolbachia </it>load. Furthermore, globomycin was also effective in reducing the motility and viability of adult <it>B. malayi in vitro</it>.</p> <p>Conclusions</p> <p>These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.</p>
|