Value-complexity tradeoff explains mouse navigational learning.

We introduce a novel methodology for describing animal behavior as a tradeoff between value and complexity, using the Morris Water Maze navigation task as a concrete example. We develop a dynamical system model of the Water Maze navigation task, solve its optimal control under varying complexity con...

Full description

Bibliographic Details
Main Authors: Nadav Amir, Reut Suliman-Lavie, Maayan Tal, Sagiv Shifman, Naftali Tishby, Israel Nelken
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-12-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1008497
Description
Summary:We introduce a novel methodology for describing animal behavior as a tradeoff between value and complexity, using the Morris Water Maze navigation task as a concrete example. We develop a dynamical system model of the Water Maze navigation task, solve its optimal control under varying complexity constraints, and analyze the learning process in terms of the value and complexity of swimming trajectories. The value of a trajectory is related to its energetic cost and is correlated with swimming time. Complexity is a novel learning metric which measures how unlikely is a trajectory to be generated by a naive animal. Our model is analytically tractable, provides good fit to observed behavior and reveals that the learning process is characterized by early value optimization followed by complexity reduction. Furthermore, complexity sensitively characterizes behavioral differences between mouse strains.
ISSN:1553-734X
1553-7358