Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1

In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundam...

Full description

Bibliographic Details
Main Authors: Luis J. Alías, Sebastião C. de Almeida, Aldir Brasil Jr.
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2004-09-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003&tlng=en
_version_ 1798015485081550848
author Luis J. Alías
Sebastião C. de Almeida
Aldir Brasil Jr.
author_facet Luis J. Alías
Sebastião C. de Almeida
Aldir Brasil Jr.
author_sort Luis J. Alías
collection DOAJ
description In this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.
first_indexed 2024-04-11T15:35:16Z
format Article
id doaj.art-07c472f0f1fb41cab0be041e76149c76
institution Directory Open Access Journal
issn 1678-2690
language English
last_indexed 2024-04-11T15:35:16Z
publishDate 2004-09-01
publisher Academia Brasileira de Ciências
record_format Article
series Anais da Academia Brasileira de Ciências
spelling doaj.art-07c472f0f1fb41cab0be041e76149c762022-12-22T04:15:58ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências1678-26902004-09-0176348949710.1590/S0001-37652004000300003Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1Luis J. Alías0Sebastião C. de Almeida1Aldir Brasil Jr.2Universidad de MurciaUniversidade Federal do CearáUniversidade Federal do CearáIn this paper we consider compact oriented hypersurfaces M with constant mean curvature and two principal curvatures immersed in the Euclidean sphere. In the minimal case, Perdomo (Perdomo 2004) andWang (Wang 2003) obtained an integral inequality involving the square of the norm of the second fundamental form of M, where equality holds only if M is the Clifford torus. In this paper, using the traceless second fundamental form of M, we extend the above integral formula to hypersurfaces with constant mean curvature and give a new characterization of the H(r)-torus.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003&tlng=enHypersurfacesconstant mean curvatureSimons formulaH(r)-torus
spellingShingle Luis J. Alías
Sebastião C. de Almeida
Aldir Brasil Jr.
Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
Anais da Academia Brasileira de Ciências
Hypersurfaces
constant mean curvature
Simons formula
H(r)-torus
title Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
title_full Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
title_fullStr Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
title_full_unstemmed Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
title_short Hypersurfaces with constant mean curvature and two principal curvatures in <img id="_x0000_i1025" src="../../../../img/revistas/aabc/v76n3/a03img01.gif" align=absbottom>n+1
title_sort hypersurfaces with constant mean curvature and two principal curvatures in img id x0000 i1025 src img revistas aabc v76n3 a03img01 gif align absbottom n 1
topic Hypersurfaces
constant mean curvature
Simons formula
H(r)-torus
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652004000300003&tlng=en
work_keys_str_mv AT luisjalias hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinimgidx0000i1025srcimgrevistasaabcv76n3a03img01gifalignabsbottomn1
AT sebastiaocdealmeida hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinimgidx0000i1025srcimgrevistasaabcv76n3a03img01gifalignabsbottomn1
AT aldirbrasiljr hypersurfaceswithconstantmeancurvatureandtwoprincipalcurvaturesinimgidx0000i1025srcimgrevistasaabcv76n3a03img01gifalignabsbottomn1