Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons

<p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and...

Full description

Bibliographic Details
Main Authors: M. N. Dyonisius, V. V. Petrenko, A. M. Smith, B. Hmiel, P. D. Neff, B. Yang, Q. Hua, J. Schmitt, S. A. Shackleton, C. Buizert, P. F. Place, J. A. Menking, R. Beaudette, C. Harth, M. Kalk, H. A. Roop, B. Bereiter, C. Armanetti, I. Vimont, S. Englund Michel, E. J. Brook, J. P. Severinghaus, R. F. Weiss, J. R. McConnell
Format: Article
Language:English
Published: Copernicus Publications 2023-02-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
_version_ 1797902689204436992
author M. N. Dyonisius
M. N. Dyonisius
V. V. Petrenko
A. M. Smith
B. Hmiel
B. Hmiel
P. D. Neff
P. D. Neff
B. Yang
Q. Hua
J. Schmitt
S. A. Shackleton
S. A. Shackleton
C. Buizert
P. F. Place
P. F. Place
J. A. Menking
J. A. Menking
R. Beaudette
C. Harth
M. Kalk
H. A. Roop
B. Bereiter
C. Armanetti
C. Armanetti
I. Vimont
I. Vimont
S. Englund Michel
E. J. Brook
J. P. Severinghaus
R. F. Weiss
J. R. McConnell
author_facet M. N. Dyonisius
M. N. Dyonisius
V. V. Petrenko
A. M. Smith
B. Hmiel
B. Hmiel
P. D. Neff
P. D. Neff
B. Yang
Q. Hua
J. Schmitt
S. A. Shackleton
S. A. Shackleton
C. Buizert
P. F. Place
P. F. Place
J. A. Menking
J. A. Menking
R. Beaudette
C. Harth
M. Kalk
H. A. Roop
B. Bereiter
C. Armanetti
C. Armanetti
I. Vimont
I. Vimont
S. Englund Michel
E. J. Brook
J. P. Severinghaus
R. F. Weiss
J. R. McConnell
author_sort M. N. Dyonisius
collection DOAJ
description <p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and quartz can produce carbon-14 (<span class="inline-formula"><sup>14</sup>C</span>). In glacial ice, <span class="inline-formula"><sup>14</sup>C</span> is also incorporated through trapping of <span class="inline-formula"><sup>14</sup>C</span>-containing atmospheric gases (<span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>). Understanding the production rates of in situ cosmogenic <span class="inline-formula"><sup>14</sup>C</span> is important to deconvolve the in situ cosmogenic and atmospheric <span class="inline-formula"><sup>14</sup>C</span> signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ <span class="inline-formula"><sup>14</sup>C</span> production rates by muons (which are the dominant production mechanism at depths of <span class="inline-formula">&gt;6</span> m solid ice equivalent) are uncertain. In this study, we use measurements of in situ <span class="inline-formula"><sup>14</sup>C</span> in ancient ice (<span class="inline-formula">&gt;50</span> ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of <span class="inline-formula"><sup>14</sup>C</span> production by muons and the partitioning of in situ <span class="inline-formula"><sup>14</sup>C</span> between CO<span class="inline-formula"><sub>2</sub></span>, CO, and <span class="inline-formula">CH<sub>4</sub></span>. Our measurements show that 33.7 % (<span class="inline-formula">±11.4 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO</span> and 66.1 % (<span class="inline-formula">±11.5 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>. <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span> represents a very small fraction (<span class="inline-formula">&lt;0.3 <i>%</i></span>) of the total. Assuming that the majority of in situ muogenic <span class="inline-formula"><sup>14</sup>C</span> in ice forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>, we also calculated muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence<span id="page844"/> interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates in ice and quartz currently lacks a good explanation and requires further investigation.</p>
first_indexed 2024-04-10T09:21:37Z
format Article
id doaj.art-07c7e30c42454b0aa85d33a5ab319094
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-04-10T09:21:37Z
publishDate 2023-02-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-07c7e30c42454b0aa85d33a5ab3190942023-02-20T10:10:19ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242023-02-011784386310.5194/tc-17-843-2023Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muonsM. N. Dyonisius0M. N. Dyonisius1V. V. Petrenko2A. M. Smith3B. Hmiel4B. Hmiel5P. D. Neff6P. D. Neff7B. Yang8Q. Hua9J. Schmitt10S. A. Shackleton11S. A. Shackleton12C. Buizert13P. F. Place14P. F. Place15J. A. Menking16J. A. Menking17R. Beaudette18C. Harth19M. Kalk20H. A. Roop21B. Bereiter22C. Armanetti23C. Armanetti24I. Vimont25I. Vimont26S. Englund Michel27E. J. Brook28J. P. Severinghaus29R. F. Weiss30J. R. McConnell31Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USAPhysics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen 2200, DenmarkDepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USACentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaDepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USApresent address: Environmental Defense Fund, Austin, TX, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USADepartment of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USACentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaCentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USApresent address: Department of Geosciences, Princeton University, Princeton, NJ 08544, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USApresent address: University Instrumentation Center, University of New Hampshire, Durham, NH 03824, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USApresent address: Australian Antarctic Partnership Program, University of Tasmania, Hobart, Tasmania, AustraliaScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USADepartment of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USApresent address: Graduate School of Design, Harvard University, Cambridge, MA, USAInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USApresent address: National Oceanic and Atmospheric Administration, Global Monitoring Division, Boulder, CO, USAInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USADivision of Hydrologic Science, Desert Research Institute, Reno, NV 89512, USA<p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and quartz can produce carbon-14 (<span class="inline-formula"><sup>14</sup>C</span>). In glacial ice, <span class="inline-formula"><sup>14</sup>C</span> is also incorporated through trapping of <span class="inline-formula"><sup>14</sup>C</span>-containing atmospheric gases (<span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>). Understanding the production rates of in situ cosmogenic <span class="inline-formula"><sup>14</sup>C</span> is important to deconvolve the in situ cosmogenic and atmospheric <span class="inline-formula"><sup>14</sup>C</span> signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ <span class="inline-formula"><sup>14</sup>C</span> production rates by muons (which are the dominant production mechanism at depths of <span class="inline-formula">&gt;6</span> m solid ice equivalent) are uncertain. In this study, we use measurements of in situ <span class="inline-formula"><sup>14</sup>C</span> in ancient ice (<span class="inline-formula">&gt;50</span> ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of <span class="inline-formula"><sup>14</sup>C</span> production by muons and the partitioning of in situ <span class="inline-formula"><sup>14</sup>C</span> between CO<span class="inline-formula"><sub>2</sub></span>, CO, and <span class="inline-formula">CH<sub>4</sub></span>. Our measurements show that 33.7 % (<span class="inline-formula">±11.4 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO</span> and 66.1 % (<span class="inline-formula">±11.5 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>. <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span> represents a very small fraction (<span class="inline-formula">&lt;0.3 <i>%</i></span>) of the total. Assuming that the majority of in situ muogenic <span class="inline-formula"><sup>14</sup>C</span> in ice forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>, we also calculated muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence<span id="page844"/> interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates in ice and quartz currently lacks a good explanation and requires further investigation.</p>https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
spellingShingle M. N. Dyonisius
M. N. Dyonisius
V. V. Petrenko
A. M. Smith
B. Hmiel
B. Hmiel
P. D. Neff
P. D. Neff
B. Yang
Q. Hua
J. Schmitt
S. A. Shackleton
S. A. Shackleton
C. Buizert
P. F. Place
P. F. Place
J. A. Menking
J. A. Menking
R. Beaudette
C. Harth
M. Kalk
H. A. Roop
B. Bereiter
C. Armanetti
C. Armanetti
I. Vimont
I. Vimont
S. Englund Michel
E. J. Brook
J. P. Severinghaus
R. F. Weiss
J. R. McConnell
Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
The Cryosphere
title Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
title_full Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
title_fullStr Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
title_full_unstemmed Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
title_short Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
title_sort using ice core measurements from taylor glacier antarctica to calibrate in situ cosmogenic sup 14 sup c production rates by muons
url https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf
work_keys_str_mv AT mndyonisius usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT mndyonisius usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT vvpetrenko usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT amsmith usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT bhmiel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT bhmiel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT pdneff usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT pdneff usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT byang usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT qhua usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT jschmitt usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT sashackleton usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT sashackleton usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT cbuizert usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT pfplace usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT pfplace usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT jamenking usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT jamenking usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT rbeaudette usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT charth usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT mkalk usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT haroop usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT bbereiter usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT carmanetti usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT carmanetti usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT ivimont usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT ivimont usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT senglundmichel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT ejbrook usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT jpseveringhaus usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT rfweiss usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons
AT jrmcconnell usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons