Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons
<p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2023-02-01
|
Series: | The Cryosphere |
Online Access: | https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf |
_version_ | 1797902689204436992 |
---|---|
author | M. N. Dyonisius M. N. Dyonisius V. V. Petrenko A. M. Smith B. Hmiel B. Hmiel P. D. Neff P. D. Neff B. Yang Q. Hua J. Schmitt S. A. Shackleton S. A. Shackleton C. Buizert P. F. Place P. F. Place J. A. Menking J. A. Menking R. Beaudette C. Harth M. Kalk H. A. Roop B. Bereiter C. Armanetti C. Armanetti I. Vimont I. Vimont S. Englund Michel E. J. Brook J. P. Severinghaus R. F. Weiss J. R. McConnell |
author_facet | M. N. Dyonisius M. N. Dyonisius V. V. Petrenko A. M. Smith B. Hmiel B. Hmiel P. D. Neff P. D. Neff B. Yang Q. Hua J. Schmitt S. A. Shackleton S. A. Shackleton C. Buizert P. F. Place P. F. Place J. A. Menking J. A. Menking R. Beaudette C. Harth M. Kalk H. A. Roop B. Bereiter C. Armanetti C. Armanetti I. Vimont I. Vimont S. Englund Michel E. J. Brook J. P. Severinghaus R. F. Weiss J. R. McConnell |
author_sort | M. N. Dyonisius |
collection | DOAJ |
description | <p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and quartz can produce carbon-14 (<span class="inline-formula"><sup>14</sup>C</span>). In glacial ice, <span class="inline-formula"><sup>14</sup>C</span> is also incorporated through trapping of <span class="inline-formula"><sup>14</sup>C</span>-containing atmospheric gases (<span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>). Understanding the production rates of in situ cosmogenic <span class="inline-formula"><sup>14</sup>C</span> is important to deconvolve the in situ cosmogenic and atmospheric <span class="inline-formula"><sup>14</sup>C</span> signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ <span class="inline-formula"><sup>14</sup>C</span> production rates by muons (which are the dominant production mechanism at depths of <span class="inline-formula">>6</span> m solid ice equivalent) are uncertain. In this study, we use measurements of in situ <span class="inline-formula"><sup>14</sup>C</span> in ancient ice (<span class="inline-formula">>50</span> ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of <span class="inline-formula"><sup>14</sup>C</span> production by muons and the partitioning of in situ <span class="inline-formula"><sup>14</sup>C</span> between CO<span class="inline-formula"><sub>2</sub></span>, CO, and <span class="inline-formula">CH<sub>4</sub></span>. Our measurements show that 33.7 % (<span class="inline-formula">±11.4 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO</span> and 66.1 % (<span class="inline-formula">±11.5 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>. <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span> represents a very small fraction (<span class="inline-formula"><0.3 <i>%</i></span>) of the total. Assuming that the majority of in situ muogenic <span class="inline-formula"><sup>14</sup>C</span> in ice forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>, we also calculated muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence<span id="page844"/> interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates in ice and quartz currently lacks a good explanation and requires further investigation.</p> |
first_indexed | 2024-04-10T09:21:37Z |
format | Article |
id | doaj.art-07c7e30c42454b0aa85d33a5ab319094 |
institution | Directory Open Access Journal |
issn | 1994-0416 1994-0424 |
language | English |
last_indexed | 2024-04-10T09:21:37Z |
publishDate | 2023-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The Cryosphere |
spelling | doaj.art-07c7e30c42454b0aa85d33a5ab3190942023-02-20T10:10:19ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242023-02-011784386310.5194/tc-17-843-2023Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muonsM. N. Dyonisius0M. N. Dyonisius1V. V. Petrenko2A. M. Smith3B. Hmiel4B. Hmiel5P. D. Neff6P. D. Neff7B. Yang8Q. Hua9J. Schmitt10S. A. Shackleton11S. A. Shackleton12C. Buizert13P. F. Place14P. F. Place15J. A. Menking16J. A. Menking17R. Beaudette18C. Harth19M. Kalk20H. A. Roop21B. Bereiter22C. Armanetti23C. Armanetti24I. Vimont25I. Vimont26S. Englund Michel27E. J. Brook28J. P. Severinghaus29R. F. Weiss30J. R. McConnell31Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USAPhysics of Ice, Climate, and Earth, Niels Bohr Institute, University of Copenhagen, Copenhagen 2200, DenmarkDepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USACentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaDepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USApresent address: Environmental Defense Fund, Austin, TX, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USADepartment of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USACentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaCentre for Accelerator Science (CAS), Australian Nuclear Science and Technology Organization (ANSTO), Lucas Heights, NSW 2234, AustraliaClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, SwitzerlandScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USApresent address: Department of Geosciences, Princeton University, Princeton, NJ 08544, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USADepartment of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USApresent address: University Instrumentation Center, University of New Hampshire, Durham, NH 03824, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USApresent address: Australian Antarctic Partnership Program, University of Tasmania, Hobart, Tasmania, AustraliaScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USADepartment of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USApresent address: Graduate School of Design, Harvard University, Cambridge, MA, USAInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USApresent address: National Oceanic and Atmospheric Administration, Global Monitoring Division, Boulder, CO, USAInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USACollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USAScripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92037, USADivision of Hydrologic Science, Desert Research Institute, Reno, NV 89512, USA<p>Cosmic rays entering the Earth's atmosphere produce showers of secondary particles such as protons, neutrons, and muons. The interaction of these particles with oxygen-16 (<span class="inline-formula"><sup>16</sup>O</span>) in minerals such as ice and quartz can produce carbon-14 (<span class="inline-formula"><sup>14</sup>C</span>). In glacial ice, <span class="inline-formula"><sup>14</sup>C</span> is also incorporated through trapping of <span class="inline-formula"><sup>14</sup>C</span>-containing atmospheric gases (<span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>). Understanding the production rates of in situ cosmogenic <span class="inline-formula"><sup>14</sup>C</span> is important to deconvolve the in situ cosmogenic and atmospheric <span class="inline-formula"><sup>14</sup>C</span> signals in ice, both of which contain valuable paleoenvironmental information. Unfortunately, the in situ <span class="inline-formula"><sup>14</sup>C</span> production rates by muons (which are the dominant production mechanism at depths of <span class="inline-formula">>6</span> m solid ice equivalent) are uncertain. In this study, we use measurements of in situ <span class="inline-formula"><sup>14</sup>C</span> in ancient ice (<span class="inline-formula">>50</span> ka) from the Taylor Glacier, an ablation site in Antarctica, in combination with a 2D ice flow model to better constrain the compound-specific rates of <span class="inline-formula"><sup>14</sup>C</span> production by muons and the partitioning of in situ <span class="inline-formula"><sup>14</sup>C</span> between CO<span class="inline-formula"><sub>2</sub></span>, CO, and <span class="inline-formula">CH<sub>4</sub></span>. Our measurements show that 33.7 % (<span class="inline-formula">±11.4 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO</span> and 66.1 % (<span class="inline-formula">±11.5 <i>%</i></span>; 95 % confidence interval) of the produced cosmogenic <span class="inline-formula"><sup>14</sup>C</span> forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>. <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span> represents a very small fraction (<span class="inline-formula"><0.3 <i>%</i></span>) of the total. Assuming that the majority of in situ muogenic <span class="inline-formula"><sup>14</sup>C</span> in ice forms <span class="inline-formula"><sup>14</sup>CO<sub>2</sub></span>, <span class="inline-formula"><sup>14</sup>CO</span>, and <span class="inline-formula"><sup>14</sup>CH<sub>4</sub></span>, we also calculated muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates that are lower by factors of 5.7 (3.6–13.9; 95 % confidence<span id="page844"/> interval) and 3.7 (2.0–11.9; 95 % confidence interval) for negative muon capture and fast muon interactions, respectively, when compared to values determined in quartz from laboratory studies (Heisinger et al., 2002a, b) and in a natural setting (Lupker et al., 2015). This apparent discrepancy in muogenic <span class="inline-formula"><sup>14</sup>C</span> production rates in ice and quartz currently lacks a good explanation and requires further investigation.</p>https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf |
spellingShingle | M. N. Dyonisius M. N. Dyonisius V. V. Petrenko A. M. Smith B. Hmiel B. Hmiel P. D. Neff P. D. Neff B. Yang Q. Hua J. Schmitt S. A. Shackleton S. A. Shackleton C. Buizert P. F. Place P. F. Place J. A. Menking J. A. Menking R. Beaudette C. Harth M. Kalk H. A. Roop B. Bereiter C. Armanetti C. Armanetti I. Vimont I. Vimont S. Englund Michel E. J. Brook J. P. Severinghaus R. F. Weiss J. R. McConnell Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons The Cryosphere |
title | Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons |
title_full | Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons |
title_fullStr | Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons |
title_full_unstemmed | Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons |
title_short | Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic <sup>14</sup>C production rates by muons |
title_sort | using ice core measurements from taylor glacier antarctica to calibrate in situ cosmogenic sup 14 sup c production rates by muons |
url | https://tc.copernicus.org/articles/17/843/2023/tc-17-843-2023.pdf |
work_keys_str_mv | AT mndyonisius usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT mndyonisius usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT vvpetrenko usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT amsmith usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT bhmiel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT bhmiel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT pdneff usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT pdneff usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT byang usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT qhua usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT jschmitt usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT sashackleton usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT sashackleton usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT cbuizert usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT pfplace usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT pfplace usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT jamenking usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT jamenking usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT rbeaudette usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT charth usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT mkalk usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT haroop usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT bbereiter usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT carmanetti usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT carmanetti usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT ivimont usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT ivimont usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT senglundmichel usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT ejbrook usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT jpseveringhaus usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT rfweiss usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons AT jrmcconnell usingicecoremeasurementsfromtaylorglacierantarcticatocalibrateinsitucosmogenicsup14supcproductionratesbymuons |