Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation

Higher-order symmetries are constructed for a linear anomalous diffusion equation with the Riemann–Liouville time-fractional derivative of order <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo>...

Full description

Bibliographic Details
Main Authors: Rafail K. Gazizov, Stanislav Yu. Lukashchuk
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/3/216
_version_ 1797408687016378368
author Rafail K. Gazizov
Stanislav Yu. Lukashchuk
author_facet Rafail K. Gazizov
Stanislav Yu. Lukashchuk
author_sort Rafail K. Gazizov
collection DOAJ
description Higher-order symmetries are constructed for a linear anomalous diffusion equation with the Riemann–Liouville time-fractional derivative of order <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. It is proved that the equation in question has infinite sequences of nontrivial higher-order symmetries that are generated by two local recursion operators. It is also shown that some of the obtained higher-order symmetries can be rewritten as fractional-order symmetries, and corresponding fractional-order recursion operators are presented. The proposed approach for finding higher-order symmetries is applicable for a wide class of linear fractional differential equations.
first_indexed 2024-03-09T04:02:07Z
format Article
id doaj.art-07e30ef030184031b710c7c03fee680f
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T04:02:07Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-07e30ef030184031b710c7c03fee680f2023-12-03T14:10:42ZengMDPI AGMathematics2227-73902021-01-019321610.3390/math9030216Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion EquationRafail K. Gazizov0Stanislav Yu. Lukashchuk1RN-BashNIPIneft LLC, 3/1 Bekhtereva Str., 450103 Ufa, RussiaLaboratory “Group Analysis of Mathemaical Models in Natural and Engineering Sciences”, Ufa State Aviation Technical University, 12 K. Marx Str., 450008 Ufa, RussiaHigher-order symmetries are constructed for a linear anomalous diffusion equation with the Riemann–Liouville time-fractional derivative of order <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo><mo>∪</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. It is proved that the equation in question has infinite sequences of nontrivial higher-order symmetries that are generated by two local recursion operators. It is also shown that some of the obtained higher-order symmetries can be rewritten as fractional-order symmetries, and corresponding fractional-order recursion operators are presented. The proposed approach for finding higher-order symmetries is applicable for a wide class of linear fractional differential equations.https://www.mdpi.com/2227-7390/9/3/216anomalous diffusionRiemann–Liouville fractional derivativeLie–Bäcklund transformationhigher-order symmetryrecursion operator
spellingShingle Rafail K. Gazizov
Stanislav Yu. Lukashchuk
Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
Mathematics
anomalous diffusion
Riemann–Liouville fractional derivative
Lie–Bäcklund transformation
higher-order symmetry
recursion operator
title Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
title_full Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
title_fullStr Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
title_full_unstemmed Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
title_short Higher-Order Symmetries of a Time-Fractional Anomalous Diffusion Equation
title_sort higher order symmetries of a time fractional anomalous diffusion equation
topic anomalous diffusion
Riemann–Liouville fractional derivative
Lie–Bäcklund transformation
higher-order symmetry
recursion operator
url https://www.mdpi.com/2227-7390/9/3/216
work_keys_str_mv AT rafailkgazizov higherordersymmetriesofatimefractionalanomalousdiffusionequation
AT stanislavyulukashchuk higherordersymmetriesofatimefractionalanomalousdiffusionequation