Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress

The fraction of absorbed photosynthetically active radiation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant=&...

Full description

Bibliographic Details
Main Authors: Zheng Sun, Liang Sun, Yu Liu, Yangwei Li, Luís Guilherme Teixeira Crusiol, Ruiqing Chen, Deji Wuyun
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/2/362
_version_ 1797342558199742464
author Zheng Sun
Liang Sun
Yu Liu
Yangwei Li
Luís Guilherme Teixeira Crusiol
Ruiqing Chen
Deji Wuyun
author_facet Zheng Sun
Liang Sun
Yu Liu
Yangwei Li
Luís Guilherme Teixeira Crusiol
Ruiqing Chen
Deji Wuyun
author_sort Zheng Sun
collection DOAJ
description The fraction of absorbed photosynthetically active radiation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>) is an important parameter reflecting the level of photosynthesis and growth status of vegetation, and is widely used in energy cycling, carbon cycling, and vegetation productivity estimation. In agricultural production, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> is often combined with the light use efficiency model to estimate crop yield. Therefore, accurate estimation of PAR is of great importance for improving the accuracy of crop yield estimation and ensuring national food security. Existing studies based on vegetation indices have not considered the effects of genetic variety, light, and water stress on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> estimation. This study uses ground-based reflectance data to simulate 21 common Sentinel-2 vegetation indices and compare their estimation ability for winter wheat <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>. The stability of the vegetation index with the highest correlation in inverting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> under different cultivars, light, and water stress was tested, and then the model was validated at the satellite scale. Finally, a sensitivity analysis was performed. The results showed that the index model based on modified NDVI (MNDVI) had the highest correlation not only throughout the critical phenological period of winter wheat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.6649) but also under different varieties, observation dates, and water stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.918, 0.881, and 0.830, respectively). It even performed the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.8312 at the satellite scale. Moreover, through comparison, we found that considering water stress and variety differences can improve the estimation accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>. The study showed that using MNDVI for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> estimation is not only feasible but also has high accuracy and stability, providing a reference for rapid and accurate estimation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> by Sentinel-2 and further exploring the potential of Sentinel-2 data for high-resolution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> mapping.
first_indexed 2024-03-08T10:35:03Z
format Article
id doaj.art-07f16f0245614993a6e99f6e5293111d
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-03-08T10:35:03Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-07f16f0245614993a6e99f6e5293111d2024-01-26T18:19:18ZengMDPI AGRemote Sensing2072-42922024-01-0116236210.3390/rs16020362Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water StressZheng Sun0Liang Sun1Yu Liu2Yangwei Li3Luís Guilherme Teixeira Crusiol4Ruiqing Chen5Deji Wuyun6State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaEmbrapa Soja (National Soybean Research Center—Brazilian Agricultural Research Corporation), Londrina 86001-970, PR, BrazilState Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaState Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, ChinaThe fraction of absorbed photosynthetically active radiation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>) is an important parameter reflecting the level of photosynthesis and growth status of vegetation, and is widely used in energy cycling, carbon cycling, and vegetation productivity estimation. In agricultural production, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> is often combined with the light use efficiency model to estimate crop yield. Therefore, accurate estimation of PAR is of great importance for improving the accuracy of crop yield estimation and ensuring national food security. Existing studies based on vegetation indices have not considered the effects of genetic variety, light, and water stress on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> estimation. This study uses ground-based reflectance data to simulate 21 common Sentinel-2 vegetation indices and compare their estimation ability for winter wheat <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>. The stability of the vegetation index with the highest correlation in inverting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> under different cultivars, light, and water stress was tested, and then the model was validated at the satellite scale. Finally, a sensitivity analysis was performed. The results showed that the index model based on modified NDVI (MNDVI) had the highest correlation not only throughout the critical phenological period of winter wheat (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.6649) but also under different varieties, observation dates, and water stress (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.918, 0.881, and 0.830, respectively). It even performed the highest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="normal">R</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></semantics></math></inline-formula> of 0.8312 at the satellite scale. Moreover, through comparison, we found that considering water stress and variety differences can improve the estimation accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula>. The study showed that using MNDVI for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> estimation is not only feasible but also has high accuracy and stability, providing a reference for rapid and accurate estimation of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> by Sentinel-2 and further exploring the potential of Sentinel-2 data for high-resolution <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mi mathvariant="normal">P</mi><mi mathvariant="normal">A</mi><mi mathvariant="normal">R</mi></mrow></semantics></math></inline-formula> mapping.https://www.mdpi.com/2072-4292/16/2/362fraction of absorbed photosynthetically active radiationMNDVIwinter wheatvegetation indexSentinel-2
spellingShingle Zheng Sun
Liang Sun
Yu Liu
Yangwei Li
Luís Guilherme Teixeira Crusiol
Ruiqing Chen
Deji Wuyun
Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
Remote Sensing
fraction of absorbed photosynthetically active radiation
MNDVI
winter wheat
vegetation index
Sentinel-2
title Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
title_full Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
title_fullStr Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
title_full_unstemmed Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
title_short Estimating Fraction of Absorbed Photosynthetically Active Radiation of Winter Wheat Based on Simulated Sentinel-2 Data under Different Varieties and Water Stress
title_sort estimating fraction of absorbed photosynthetically active radiation of winter wheat based on simulated sentinel 2 data under different varieties and water stress
topic fraction of absorbed photosynthetically active radiation
MNDVI
winter wheat
vegetation index
Sentinel-2
url https://www.mdpi.com/2072-4292/16/2/362
work_keys_str_mv AT zhengsun estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT liangsun estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT yuliu estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT yangweili estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT luisguilhermeteixeiracrusiol estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT ruiqingchen estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress
AT dejiwuyun estimatingfractionofabsorbedphotosyntheticallyactiveradiationofwinterwheatbasedonsimulatedsentinel2dataunderdifferentvarietiesandwaterstress