Analysis of Microbial Diversity and Metabolites in Sauerkraut Products with and without Microorganism Addition

The microbial compositions and metabolites of fermented sauerkraut with and without the addition of microorganisms have been compared. The OTU clustering, nonvolatile compounds, volatile compounds and associations between bacterial taxa and metabolites were analyzed by 16S rRNA high-throughput seque...

Full description

Bibliographic Details
Main Authors: Yueyi Liu, Xiaochun Chen, Fuxiang Li, Huiling Shi, Mingyi He, Jingping Ge, Hongzhi Ling, Keke Cheng
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/12/6/1164
Description
Summary:The microbial compositions and metabolites of fermented sauerkraut with and without the addition of microorganisms have been compared. The OTU clustering, nonvolatile compounds, volatile compounds and associations between bacterial taxa and metabolites were analyzed by 16S rRNA high-throughput sequencing technology, ultra performance liquid chromatography (UPLC), gas chromatography ion mobility mass spectrometry (GC-IMS) and the O2PLS model studies. The results showed that at the phylum level, the microbial species in the four sauerkraut types consisted mainly of the phyla <i>Firmicutes</i> and <i>Proteobacteria</i>, but different modes of microbial addition formed their own unique microbial communities. There were significant differences in the microbial communities among different northeast China sauerkraut samples, and different microbial communities exerted similar effects to inhibit <i>Firmicutes</i> production. At the genus level, sauerkraut without added microorganisms had the lowest microbial diversity. A total of 26 amino acids and 11 organic acids were identified and were more abundant in nonmicrobially fermented sauerkraut; 88 volatile organic compounds were identified in the 4 types of sauerkraut, with the microbially fermented sauerkraut being richer in alcohols, esters and acids. Different brands of sauerkraut contain their own unique flavor compounds. Cystine and tyrosine, ascorbic acid and acetic acid, and alcohols and esters are closely related to a wide range of microorganisms in sauerkraut. Elucidating the correlations among microbiota and metabolites will help guide future improvements in sauerkraut fermentation processes.
ISSN:2304-8158