Superconducting Analogue of the Parafermion Fractional Quantum Hall States

Read-Rezayi Z_{k} parafermion wave functions describe ν=2+(k/kM+2) fractional quantum Hall (FQH) states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this paper, we...

Full description

Bibliographic Details
Main Author: Abolhassan Vaezi
Format: Article
Language:English
Published: American Physical Society 2014-07-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.4.031009
Description
Summary:Read-Rezayi Z_{k} parafermion wave functions describe ν=2+(k/kM+2) fractional quantum Hall (FQH) states. These states support non-Abelian excitations from which protected quantum gates can be designed. However, there is no experimental evidence for these non-Abelian anyons to date. In this paper, we study the ν=2/k FQH-superconductor heterostructure and find the superconducting analogue of the Z_{k} parafermion FQH state. Our main tool is the mapping of the FQH into coupled one-dimensional chains, each with a pair of counterpropagating modes. We show that by inducing intrachain pairing and charge preserving backscattering with identical couplings, the one-dimensional chains flow into gapless Z_{k} parafermions when k<4. By studying the effect of interchain coupling, we show that every parafermion mode becomes massive except for the two outermost ones. Thus, we achieve a fractional topological superconductor whose chiral edge state is described by a Z_{k} parafermion conformal field theory. For instance, we find that a ν=2/3 FQH in proximity to a superconductor produces a Z_{3} parafermion superconducting state. This state is topologically indistinguishable from the non-Abelian part of the ν=12/5 Read-Rezayi state. Both of these systems can host Fibonacci anyons capable of performing universal quantum computation through braiding operations.
ISSN:2160-3308