Tongue feature dataset construction and real-time detection.

<h4>Background</h4>Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of man...

Full description

Bibliographic Details
Main Authors: Wen-Hsien Chang, Chih-Chieh Chen, Han-Kuei Wu, Po-Chi Hsu, Lun-Chien Lo, Hsueh-Ting Chu, Hen-Hong Chang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296070&type=printable
_version_ 1797263507021889536
author Wen-Hsien Chang
Chih-Chieh Chen
Han-Kuei Wu
Po-Chi Hsu
Lun-Chien Lo
Hsueh-Ting Chu
Hen-Hong Chang
author_facet Wen-Hsien Chang
Chih-Chieh Chen
Han-Kuei Wu
Po-Chi Hsu
Lun-Chien Lo
Hsueh-Ting Chu
Hen-Hong Chang
author_sort Wen-Hsien Chang
collection DOAJ
description <h4>Background</h4>Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of manpower and time. TCM physicians may have different interpretations of features displayed by the same tongue. An automated interpretation system that interprets tongue features would expedite the interpretation process and yield more consistent results.<h4>Materials and methods</h4>This study applied deep learning visualization to tongue diagnosis. After collecting tongue images and corresponding interpretation reports by TCM physicians in a single teaching hospital, various tongue features such as fissures, tooth marks, and different types of coatings were annotated manually with rectangles. These annotated data and images were used to train a deep learning object detection model. Upon completion of training, the position of each tongue feature was dynamically marked.<h4>Results</h4>A large high-quality manually annotated tongue feature dataset was constructed and analyzed. A detection model was trained with average precision (AP) 47.67%, 58.94%, 71.25% and 59.78% for fissures, tooth marks, thick and yellow coatings, respectively. At over 40 frames per second on a NVIDIA GeForce GTX 1060, the model was capable of detecting tongue features from any viewpoint in real time.<h4>Conclusions/significance</h4>This study constructed a tongue feature dataset and trained a deep learning object detection model to locate tongue features in real time. The model provided interpretability and intuitiveness that are often lacking in general neural network models and implies good feasibility for clinical application.
first_indexed 2024-04-25T00:14:06Z
format Article
id doaj.art-0815fbed4439466c8483f5c502b79b64
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-04-25T00:14:06Z
publishDate 2024-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-0815fbed4439466c8483f5c502b79b642024-03-13T05:31:26ZengPublic Library of Science (PLoS)PLoS ONE1932-62032024-01-01193e029607010.1371/journal.pone.0296070Tongue feature dataset construction and real-time detection.Wen-Hsien ChangChih-Chieh ChenHan-Kuei WuPo-Chi HsuLun-Chien LoHsueh-Ting ChuHen-Hong Chang<h4>Background</h4>Tongue diagnosis in traditional Chinese medicine (TCM) provides clinically important, objective evidence from direct observation of specific features that assist with diagnosis. However, the current interpretation of tongue features requires a significant amount of manpower and time. TCM physicians may have different interpretations of features displayed by the same tongue. An automated interpretation system that interprets tongue features would expedite the interpretation process and yield more consistent results.<h4>Materials and methods</h4>This study applied deep learning visualization to tongue diagnosis. After collecting tongue images and corresponding interpretation reports by TCM physicians in a single teaching hospital, various tongue features such as fissures, tooth marks, and different types of coatings were annotated manually with rectangles. These annotated data and images were used to train a deep learning object detection model. Upon completion of training, the position of each tongue feature was dynamically marked.<h4>Results</h4>A large high-quality manually annotated tongue feature dataset was constructed and analyzed. A detection model was trained with average precision (AP) 47.67%, 58.94%, 71.25% and 59.78% for fissures, tooth marks, thick and yellow coatings, respectively. At over 40 frames per second on a NVIDIA GeForce GTX 1060, the model was capable of detecting tongue features from any viewpoint in real time.<h4>Conclusions/significance</h4>This study constructed a tongue feature dataset and trained a deep learning object detection model to locate tongue features in real time. The model provided interpretability and intuitiveness that are often lacking in general neural network models and implies good feasibility for clinical application.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296070&type=printable
spellingShingle Wen-Hsien Chang
Chih-Chieh Chen
Han-Kuei Wu
Po-Chi Hsu
Lun-Chien Lo
Hsueh-Ting Chu
Hen-Hong Chang
Tongue feature dataset construction and real-time detection.
PLoS ONE
title Tongue feature dataset construction and real-time detection.
title_full Tongue feature dataset construction and real-time detection.
title_fullStr Tongue feature dataset construction and real-time detection.
title_full_unstemmed Tongue feature dataset construction and real-time detection.
title_short Tongue feature dataset construction and real-time detection.
title_sort tongue feature dataset construction and real time detection
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296070&type=printable
work_keys_str_mv AT wenhsienchang tonguefeaturedatasetconstructionandrealtimedetection
AT chihchiehchen tonguefeaturedatasetconstructionandrealtimedetection
AT hankueiwu tonguefeaturedatasetconstructionandrealtimedetection
AT pochihsu tonguefeaturedatasetconstructionandrealtimedetection
AT lunchienlo tonguefeaturedatasetconstructionandrealtimedetection
AT hsuehtingchu tonguefeaturedatasetconstructionandrealtimedetection
AT henhongchang tonguefeaturedatasetconstructionandrealtimedetection