Identification of novel B cell epitopes in Fiber-2 protein of duck adenovirus 3 and their application

Abstract Duck adenovirus 3 (DAdV-3), a newly emerged duck adenovirus, has resulted in significant economic losses to the duck industry across China since 2014. However, little is known about the B cell epitopes in major antigen of DAdV-3 and the serological approach for detection of DAdV-3 is not av...

Full description

Bibliographic Details
Main Authors: Yun Lin, Wenyuan Zhang, Jing Xie, Weikang Wang, Quan Xie, Tuofan Li, Hongxia Shao, Aijian Qin, Zhimin Wan, Jianqiang Ye
Format: Article
Language:English
Published: SpringerOpen 2023-06-01
Series:AMB Express
Subjects:
Online Access:https://doi.org/10.1186/s13568-023-01552-9
Description
Summary:Abstract Duck adenovirus 3 (DAdV-3), a newly emerged duck adenovirus, has resulted in significant economic losses to the duck industry across China since 2014. However, little is known about the B cell epitopes in major antigen of DAdV-3 and the serological approach for detection of DAdV-3 is not available. In this study, four monoclonal antibodies (mAbs) specific to Fiber-2 protein of DAdV-3 were first generated and designated as 2G10, 3D9, 5E6, and 6B12. Indirect immunofluorescence assay (IFA) showed that all of the mAbs reacted with the Fiber-2. Moreover, mAbs 2G10, 5E6, and 6B12 demonstrated good activity with Fiber-2 in Western blot. Notably, the Fiber-2 could be immunoprecipitated efficiently by mAb 3D9. Epitope mapping revealed that mAbs 2G10, 3D9, 5E6, and 6B12 recognized 397-429aa, 463-481aa, 67-99aa, and 1-66aa of Fiber-2, respectively. Besides, a novel sandwich ELISA for efficient detection of DAdV-3 was developed based on mAb 3D9 and horseradish peroxidase (HRP) conjugated mAb 3D9. The sandwich ELISA only reacted with DAdV-3 but not with other duck-associated viruses. The limit of detection of the ELISA was 6.25 × 103 TCID50/mL. Overall, the mAbs generated laid the foundation for elucidating the critical role of Fiber-2 in mediating infection and pathogenesis, and the sandwich ELISA approach established here provided efficient and rapid serological diagnostic tool for DAdV-3.
ISSN:2191-0855