A Skew Logistic Distribution for Modelling COVID-19 Waves and Its Evaluation Using the Empirical Survival Jensen–Shannon Divergence

A novel yet simple extension of the symmetric logistic distribution is proposed by introducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic distribution may be estimated using maximum likelihood. The skew logistic distribution is then extended to the skew b...

全面介绍

书目详细资料
主要作者: Mark Levene
格式: 文件
语言:English
出版: MDPI AG 2022-04-01
丛编:Entropy
主题:
在线阅读:https://www.mdpi.com/1099-4300/24/5/600
实物特征
总结:A novel yet simple extension of the symmetric logistic distribution is proposed by introducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic distribution may be estimated using maximum likelihood. The skew logistic distribution is then extended to the skew bi-logistic distribution to allow the modelling of multiple waves in epidemic time series data. The proposed skew-logistic model is validated on COVID-19 data from the UK, and is evaluated for goodness-of-fit against the logistic and normal distributions using the recently formulated empirical survival Jensen–Shannon divergence (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mi>S</mi><mi>J</mi><mi>S</mi></mrow></semantics></math></inline-formula>) and the Kolmogorov–Smirnov two-sample test statistic (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>S</mi><mn>2</mn></mrow></semantics></math></inline-formula>). We employ 95% bootstrap confidence intervals to assess the improvement in goodness-of-fit of the skew logistic distribution over the other distributions. The obtained confidence intervals for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mi>S</mi><mi>J</mi><mi>S</mi></mrow></semantics></math></inline-formula> are narrower than those for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>S</mi><mn>2</mn></mrow></semantics></math></inline-formula> on using this dataset, implying that the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">E</mi><mi>S</mi><mi>J</mi><mi>S</mi></mrow></semantics></math></inline-formula> is more powerful than the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>K</mi><mi>S</mi><mn>2</mn></mrow></semantics></math></inline-formula>.
ISSN:1099-4300