Genetic characterization of trh positive Vibrio spp. isolated from Norway

The thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH) genes are carried by most virulent Vibrio parahaemolyticus serovars. In Norway, trh+ V. parahaemolyticus constitute 4.4% and 4.5 % of the total number of V. parahaemolyticus isolated from blue mussel (Mytilus edulis) and wate...

Full description

Bibliographic Details
Main Authors: Anette eBauer Ellingsen, Jaran Strand Olsen, Per Einar Granum, Liv Marit Rorvik, Narjol eGonzález-Escalona
Format: Article
Language:English
Published: Frontiers Media S.A. 2013-12-01
Series:Frontiers in Cellular and Infection Microbiology
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fcimb.2013.00107/full
Description
Summary:The thermostable direct hemolysin (TDH) and/or TDH-related hemolysin (TRH) genes are carried by most virulent Vibrio parahaemolyticus serovars. In Norway, trh+ V. parahaemolyticus constitute 4.4% and 4.5 % of the total number of V. parahaemolyticus isolated from blue mussel (Mytilus edulis) and water, respectively. The trh gene is located in a region close to the gene cluster for urease production (ure). This region was characterized in V. parahaemolyticus strain TH3996 and it was found that a nickel transport operon (nik) was located between the first gene (ureR) and the rest of the ure cluster genes. The organization of the trh-ureR-nik-ure gene cluster in the Norwegian trh+ isolates was unknown. In this study, we explore the gene organization within the trh-ureR-nik-ure cluster for these isolates. PCR analyses revealed that the genes within the trh-ureR-nik-ure gene cluster of Norwegian trh+ isolates were organized in a similar fashion as reported previously for TH33996. Additionally, the phylogenetic relationship among these trh+ isolates was investigated using Multilocus Sequence Typing (MLST). Analysis by MLST or ureR-trh sequences generated two different phylogenetic trees for the same strains analyzed, suggesting that ureR-trh genes have been acquired at different times in Norwegian V. parahaemolyticus isolates. MLST results revealed that some pathogenic and non-pathogenic V. parahaemolyticus isolates in Norway appear to be highly genetically related.
ISSN:2235-2988