Network Intrusion Detection Algorithm Combined with Group Convolution Network and Snapshot Ensemble

In order to adapt to the rapid development of network technology and network security detection in different scenarios, the generalization ability of the classifier needs to be further improved and has the ability to detect unknown attacks. However, the generalization ability of a single classifier...

Full description

Bibliographic Details
Main Authors: Aili Wang, Wenya Wang, Huaming Zhou, Jian Zhang
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/13/10/1814
Description
Summary:In order to adapt to the rapid development of network technology and network security detection in different scenarios, the generalization ability of the classifier needs to be further improved and has the ability to detect unknown attacks. However, the generalization ability of a single classifier is limited to dealing with class imbalance, and the previous ensemble methods inevitably increase the training cost. Therefore, in this paper, a novel network intrusion detection algorithm combined with group convolution is proposed to improve the generalization performance of the model. The basic classifier uses group convolution with symmetric structure instead of ordinary convolution neural network, which is trained by the cyclic cosine annealing learning rate. Through snapshot ensemble, the generalization ability of the integration model is improved without increasing the training cost. The effectiveness of this method is proved on NSL-KDD and UNSW-NB15 datasets compared to six other ensemble methods, the classification accuracy can achieve 85.82% and 80.38%, respectively.
ISSN:2073-8994