The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations

We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published...

Full description

Bibliographic Details
Main Authors: M. Radžiūnas, F. Ivanauskas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 1998-12-01
Series:Mathematical Modelling and Analysis
Subjects:
-
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/10002
_version_ 1818874387952041984
author M. Radžiūnas
F. Ivanauskas
author_facet M. Radžiūnas
F. Ivanauskas
author_sort M. Radžiūnas
collection DOAJ
description We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published Online: 14 Oct 2010
first_indexed 2024-12-19T13:09:48Z
format Article
id doaj.art-08718c9d38cf4089b0ff0b33671c0988
institution Directory Open Access Journal
issn 1392-6292
1648-3510
language English
last_indexed 2024-12-19T13:09:48Z
publishDate 1998-12-01
publisher Vilnius Gediminas Technical University
record_format Article
series Mathematical Modelling and Analysis
spelling doaj.art-08718c9d38cf4089b0ff0b33671c09882022-12-21T20:19:57ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35101998-12-013110.3846/13926292.1998.9637101The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equationsM. Radžiūnas0F. Ivanauskas1Weierstrass Institute for Applied Analysis and Stochastics , Mohrenstrasse 39, Berlin, D‐10117, GermanyFaculty of Mathematics , Vilnius University , Naugarduko 24, Vilnius, LT‐2600, LithuaniaWe consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/10002-
spellingShingle M. Radžiūnas
F. Ivanauskas
The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
Mathematical Modelling and Analysis
-
title The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_full The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_fullStr The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_full_unstemmed The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_short The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
title_sort stability conditions of finite difference schemes for schrodinger kuramoto tszuki and heat equations
topic -
url https://journals.vgtu.lt/index.php/MMA/article/view/10002
work_keys_str_mv AT mradziunas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT fivanauskas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT mradziunas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations
AT fivanauskas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations