The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations
We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
1998-12-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/10002 |
_version_ | 1818874387952041984 |
---|---|
author | M. Radžiūnas F. Ivanauskas |
author_facet | M. Radžiūnas F. Ivanauskas |
author_sort | M. Radžiūnas |
collection | DOAJ |
description | We consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm.
First Published Online: 14 Oct 2010 |
first_indexed | 2024-12-19T13:09:48Z |
format | Article |
id | doaj.art-08718c9d38cf4089b0ff0b33671c0988 |
institution | Directory Open Access Journal |
issn | 1392-6292 1648-3510 |
language | English |
last_indexed | 2024-12-19T13:09:48Z |
publishDate | 1998-12-01 |
publisher | Vilnius Gediminas Technical University |
record_format | Article |
series | Mathematical Modelling and Analysis |
spelling | doaj.art-08718c9d38cf4089b0ff0b33671c09882022-12-21T20:19:57ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35101998-12-013110.3846/13926292.1998.9637101The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equationsM. Radžiūnas0F. Ivanauskas1Weierstrass Institute for Applied Analysis and Stochastics , Mohrenstrasse 39, Berlin, D‐10117, GermanyFaculty of Mathematics , Vilnius University , Naugarduko 24, Vilnius, LT‐2600, LithuaniaWe consider various finite difference schemes for the first and the second initial‐boundary value problems for linear Kuramoto‐Tsuzuki, heat and Schrödinger equations in d‐dimensional case. Using spectral methods, we find the conditions of stability on initial data in the L2 norm. First Published Online: 14 Oct 2010https://journals.vgtu.lt/index.php/MMA/article/view/10002- |
spellingShingle | M. Radžiūnas F. Ivanauskas The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations Mathematical Modelling and Analysis - |
title | The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations |
title_full | The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations |
title_fullStr | The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations |
title_full_unstemmed | The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations |
title_short | The stability conditions of finite difference schemes for schrödinger, Kuramoto‐Tszuki and heat equations |
title_sort | stability conditions of finite difference schemes for schrodinger kuramoto tszuki and heat equations |
topic | - |
url | https://journals.vgtu.lt/index.php/MMA/article/view/10002 |
work_keys_str_mv | AT mradziunas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations AT fivanauskas thestabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations AT mradziunas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations AT fivanauskas stabilityconditionsoffinitedifferenceschemesforschrodingerkuramototszukiandheatequations |