On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type

Abstract We study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{...

Full description

Bibliographic Details
Main Author: Sujun Weng
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02550-w
_version_ 1818854937314983936
author Sujun Weng
author_facet Sujun Weng
author_sort Sujun Weng
collection DOAJ
description Abstract We study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ We assume that A ′ ( s ) = a ( s ) ≥ 0 $A'(s)=a(s)\geq 0$ , A ( s ) $A(s)$ is a strictly increasing function, A ( 0 ) = 0 $A(0)=0$ , b ( x , t ) ≥ 0 $b(x,t)\geq 0$ , and α ( x , t ) ≥ 0 $\alpha (x,t)\geq 0$ . If b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ then we prove the stability of weak solutions without the boundary value condition.
first_indexed 2024-12-19T08:00:38Z
format Article
id doaj.art-08769eb987954a29b3dfe7728d7b20a8
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-19T08:00:38Z
publishDate 2021-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-08769eb987954a29b3dfe7728d7b20a82022-12-21T20:29:53ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-01-012021111910.1186/s13660-021-02550-wOn a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed typeSujun Weng0Chengyi University College, Jimei UniversityAbstract We study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ We assume that A ′ ( s ) = a ( s ) ≥ 0 $A'(s)=a(s)\geq 0$ , A ( s ) $A(s)$ is a strictly increasing function, A ( 0 ) = 0 $A(0)=0$ , b ( x , t ) ≥ 0 $b(x,t)\geq 0$ , and α ( x , t ) ≥ 0 $\alpha (x,t)\geq 0$ . If b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ then we prove the stability of weak solutions without the boundary value condition.https://doi.org/10.1186/s13660-021-02550-wNewtonian fluid∼non-Newtonian fluid mixed-type equationThe existenceStabilityBoundary value condition
spellingShingle Sujun Weng
On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
Journal of Inequalities and Applications
Newtonian fluid∼non-Newtonian fluid mixed-type equation
The existence
Stability
Boundary value condition
title On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
title_full On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
title_fullStr On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
title_full_unstemmed On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
title_short On a degenerate parabolic equation with Newtonian fluid∼non-Newtonian fluid mixed type
title_sort on a degenerate parabolic equation with newtonian fluid∼non newtonian fluid mixed type
topic Newtonian fluid∼non-Newtonian fluid mixed-type equation
The existence
Stability
Boundary value condition
url https://doi.org/10.1186/s13660-021-02550-w
work_keys_str_mv AT sujunweng onadegenerateparabolicequationwithnewtonianfluidnonnewtonianfluidmixedtype