Effect of the Wavy permeable Interface on Double Diffusive Natural Convection in a Partially Porous Cavity

Two-dimensional, double diffusion, natural convection in a partially porous cavity satured with a binary fluid is investigated numerically. Multiple motions are driven by the external temperature and concentration differences imposed across vertical walls. The wavy interface between fluid and porous...

Full description

Bibliographic Details
Main Authors: R Mehdaoui, M Elmir, A Mojtabi
Format: Article
Language:English
Published: MULTIPHYSICS 2016-09-01
Series:International Journal of Multiphysics
Online Access:http://journal.multiphysics.org/index.php/IJM/article/view/149
Description
Summary:Two-dimensional, double diffusion, natural convection in a partially porous cavity satured with a binary fluid is investigated numerically. Multiple motions are driven by the external temperature and concentration differences imposed across vertical walls. The wavy interface between fluid and porous layer is horizontal. The equations which describe the fluid flow and heat and mass transfer are described by the Navier-Stokes equations (fluid region), Darcy-Brinkman equation (porous region) and energy and mass equations. The finite element method was applied to solve the governing equations. The fluid flow and heat and mass transfer has been investigated for different values of the amplitude and the wave number of the interface and the buoyancy ratio. The results obtained in the form of isotherms, stream lines, isoconcentrations and the Nusselt and Sherwood numbers; show that the wavy interface has a significant effect on the flow and heat and mass transfer.
ISSN:1750-9548
2048-3961