An Infrared Absorbance Sensor for the Detection of Melanoma in Skin Biopsies

An infrared (IR) absorbance sensor has been designed, realized and tested with the aim of detecting malignant melanomas in human skin biopsies. The sensor has been designed to obtain fast measurements (80 s) of a biopsy using a small light spot (0.5 mm in diameter, typically five to 10 times smaller...

Full description

Bibliographic Details
Main Authors: Valeria Fioravanti, Lukas Brandhoff, Sander van den Driesche, Heimo Breiteneder, Melitta Kitzwögerer, Christine Hafner, Michael J. Vellekoop
Format: Article
Language:English
Published: MDPI AG 2016-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/10/1659
Description
Summary:An infrared (IR) absorbance sensor has been designed, realized and tested with the aim of detecting malignant melanomas in human skin biopsies. The sensor has been designed to obtain fast measurements (80 s) of a biopsy using a small light spot (0.5 mm in diameter, typically five to 10 times smaller than the biopsy size) to investigate different biopsy areas. The sensor has been equipped with a monochromator to record the whole IR spectrum in the 3330–3570 nm wavelength range (where methylene and methyl stretching vibrations occur) for a qualitative spectral investigation. From the collected spectra, the CH2 stretch ratio values (ratio of the absorption intensities of the symmetric to asymmetric CH2 stretching peaks) are determined and studied as a cancer indicator. Melanoma areas exhibit different spectral shapes and significantly higher CH2 stretch ratios when compared to healthy skin. The results of the infrared investigation are compared with standard histology. This study shows that the IR sensor is a promising supportive tool to improve the diagnosis of melanoma during histopathological analysis, decreasing the risk of misdiagnosis.
ISSN:1424-8220