Characterisation of Wheat Straw Pellets Individually and in Combination with Cassava Starch or Calcium Carbonate under Various Compaction Conditions: Determination of Pellet Strength and Water Absorption Capacity

This study aimed to optimise the production conditions of wheat straw (WS) pellets and pellets with the additives of cassava starch (CS) or calcium carbonate (CC) based on the criteria of pellet strength and water absorption by crushed pellets. The pellets produced using a 2–10%-wt/wt additive ratio...

Full description

Bibliographic Details
Main Authors: Patryk Matkowski, Aleksander Lisowski, Adam Świętochowski
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/19/4375
Description
Summary:This study aimed to optimise the production conditions of wheat straw (WS) pellets and pellets with the additives of cassava starch (CS) or calcium carbonate (CC) based on the criteria of pellet strength and water absorption by crushed pellets. The pellets produced using a 2–10%-wt/wt additive ratio, material moisture of 10–30% w.b., die height of 66–86 mm, and material temperature of 78–108 °C were tested. The influence these factors on the strength parameters of pellets was different than on the water absorption by the crushed pellets. The pellets made of WS blended with CC additive were characterised by better strength parameters and the compressed pellets were characterised by better water absorption than those with CS. High and positive correlation among specific pellet compression work, elasticity modulus for pellet compression, and tensile strength values were observed. As the strength parameters of pellets showed high correlation with single pellet density, for the consistency of conclusions, the optimal conditions for pellet production were assumed based on the density. For optimal conditions at 4% wt/wt additive ratio, 23% w.b. material moisture, 78 mm die height, and 80 °C material temperature, the specific pellet compression work was 3.22 mJ·mm<sup>−2</sup>, elasticity modulus was 5.78 MPa, and maximum tensile strength of the pellets was 2.68 MPa; moreover, the water absorption by crushed pellets amounted to 2.60 g H<sub>2</sub>O·g<sup>−1</sup> of dry matter.
ISSN:1996-1944