Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China

<p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijin...

Full description

Bibliographic Details
Main Authors: Z. Zhang, Y. Sun, C. Chen, B. You, A. Du, W. Xu, Y. Li, Z. Li, L. Lei, W. Zhou, J. Sun, Y. Qiu, L. Wei, P. Fu, Z. Wang
Format: Article
Language:English
Published: Copernicus Publications 2022-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf
_version_ 1811215339970625536
author Z. Zhang
Z. Zhang
Y. Sun
Y. Sun
Y. Sun
C. Chen
C. Chen
B. You
B. You
A. Du
A. Du
W. Xu
Y. Li
Y. Li
Z. Li
Z. Li
L. Lei
L. Lei
W. Zhou
J. Sun
J. Sun
Y. Qiu
Y. Qiu
L. Wei
P. Fu
Z. Wang
Z. Wang
author_facet Z. Zhang
Z. Zhang
Y. Sun
Y. Sun
Y. Sun
C. Chen
C. Chen
B. You
B. You
A. Du
A. Du
W. Xu
Y. Li
Y. Li
Z. Li
Z. Li
L. Lei
L. Lei
W. Zhou
J. Sun
J. Sun
Y. Qiu
Y. Qiu
L. Wei
P. Fu
Z. Wang
Z. Wang
author_sort Z. Zhang
collection DOAJ
description <p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijing. Particularly, we present the first mass spectral characterization of WIOA by integrating online and offline organic aerosol measurements from high-resolution aerosol mass spectrometer. Our results showed that WSOA on average accounted for 59 % of the total OA and comprised dominantly secondary OA (SOA, 69 %). The WSOA composition showed significant changes during the transition season from autumn to winter. While the photochemical-related SOA dominated WSOA (51 %) in early November, the oxidized SOA from biomass burning increased substantially from 8 % to 29 % during the heating season. Comparatively, local primary OA dominantly from cooking aerosol contributed the major fraction of WSOA during clean periods. WIOA showed largely different spectral patterns from WSOA which were characterized by prominent hydrocarbon ions series and low oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.19) and organic mass-to-organic carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">OM</mi><mo>/</mo><mi mathvariant="normal">OC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4bb56872d2275acf09e724b18cdbaabf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00002.svg" width="42pt" height="14pt" src="acp-22-10409-2022-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 1.39) ratios. The nighttime WIOA showed less oxidized properties (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4e2af1a0250a0e0a8308f118d01f5404"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00003.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.16 vs. 0.24) with more pronounced polycyclic aromatic hydrocarbons (PAHs) signals than daytime, indicating the impacts of enhanced coal combustion emissions on WIOA. The evolution process of WSOA and WIOA was further demonstrated by the triangle plot of <span class="inline-formula"><i>f</i><sub>44</sub></span> (fraction of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00004.svg" width="23pt" height="14pt" src="acp-22-10409-2022-ie00004.png"/></svg:svg></span></span> 44 in OA) vs. <span class="inline-formula"><i>f</i><sub>43</sub></span>, <span class="inline-formula"><i>f</i><sub>44</sub></span> vs. <span class="inline-formula"><i>f</i><sub>60</sub></span>, and the Van Krevelen diagram (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">H</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b0b81fa321db5de917056e61c42fdd2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00005.svg" width="24pt" height="14pt" src="acp-22-10409-2022-ie00005.png"/></svg:svg></span></span> vs. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1e88103fd3a4a390c907e8cef533024"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00006.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00006.png"/></svg:svg></span></span>). We also found more oxidized WSOA and an increased contribution of SOA in WSOA compared with previous winter studies in Beijing, indicating that the changes in OA composition due to clean air act have affected the sources and properties of WSOA.</p>
first_indexed 2024-04-12T06:19:57Z
format Article
id doaj.art-089df940692d4956abb24a2ec8e57daa
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-12T06:19:57Z
publishDate 2022-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-089df940692d4956abb24a2ec8e57daa2022-12-22T03:44:20ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-08-0122104091042310.5194/acp-22-10409-2022Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, ChinaZ. Zhang0Z. Zhang1Y. Sun2Y. Sun3Y. Sun4C. Chen5C. Chen6B. You7B. You8A. Du9A. Du10W. Xu11Y. Li12Y. Li13Z. Li14Z. Li15L. Lei16L. Lei17W. Zhou18J. Sun19J. Sun20Y. Qiu21Y. Qiu22L. Wei23P. Fu24Z. Wang25Z. Wang26State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaInstitute of Surface-Earth System Science, Tianjin University, Tianjin 300072, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China<p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijing. Particularly, we present the first mass spectral characterization of WIOA by integrating online and offline organic aerosol measurements from high-resolution aerosol mass spectrometer. Our results showed that WSOA on average accounted for 59 % of the total OA and comprised dominantly secondary OA (SOA, 69 %). The WSOA composition showed significant changes during the transition season from autumn to winter. While the photochemical-related SOA dominated WSOA (51 %) in early November, the oxidized SOA from biomass burning increased substantially from 8 % to 29 % during the heating season. Comparatively, local primary OA dominantly from cooking aerosol contributed the major fraction of WSOA during clean periods. WIOA showed largely different spectral patterns from WSOA which were characterized by prominent hydrocarbon ions series and low oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.19) and organic mass-to-organic carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">OM</mi><mo>/</mo><mi mathvariant="normal">OC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4bb56872d2275acf09e724b18cdbaabf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00002.svg" width="42pt" height="14pt" src="acp-22-10409-2022-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 1.39) ratios. The nighttime WIOA showed less oxidized properties (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4e2af1a0250a0e0a8308f118d01f5404"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00003.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.16 vs. 0.24) with more pronounced polycyclic aromatic hydrocarbons (PAHs) signals than daytime, indicating the impacts of enhanced coal combustion emissions on WIOA. The evolution process of WSOA and WIOA was further demonstrated by the triangle plot of <span class="inline-formula"><i>f</i><sub>44</sub></span> (fraction of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00004.svg" width="23pt" height="14pt" src="acp-22-10409-2022-ie00004.png"/></svg:svg></span></span> 44 in OA) vs. <span class="inline-formula"><i>f</i><sub>43</sub></span>, <span class="inline-formula"><i>f</i><sub>44</sub></span> vs. <span class="inline-formula"><i>f</i><sub>60</sub></span>, and the Van Krevelen diagram (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">H</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b0b81fa321db5de917056e61c42fdd2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00005.svg" width="24pt" height="14pt" src="acp-22-10409-2022-ie00005.png"/></svg:svg></span></span> vs. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1e88103fd3a4a390c907e8cef533024"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00006.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00006.png"/></svg:svg></span></span>). We also found more oxidized WSOA and an increased contribution of SOA in WSOA compared with previous winter studies in Beijing, indicating that the changes in OA composition due to clean air act have affected the sources and properties of WSOA.</p>https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf
spellingShingle Z. Zhang
Z. Zhang
Y. Sun
Y. Sun
Y. Sun
C. Chen
C. Chen
B. You
B. You
A. Du
A. Du
W. Xu
Y. Li
Y. Li
Z. Li
Z. Li
L. Lei
L. Lei
W. Zhou
J. Sun
J. Sun
Y. Qiu
Y. Qiu
L. Wei
P. Fu
Z. Wang
Z. Wang
Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
Atmospheric Chemistry and Physics
title Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
title_full Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
title_fullStr Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
title_full_unstemmed Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
title_short Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
title_sort sources and processes of water soluble and water insoluble organic aerosol in cold season in beijing china
url https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf
work_keys_str_mv AT zzhang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT zzhang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT cchen sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT cchen sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT byou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT byou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT adu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT adu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT wxu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT yli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT yli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT zli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT zli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT llei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT llei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT wzhou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT jsun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT jsun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT yqiu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT yqiu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT lwei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT pfu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT zwang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina
AT zwang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina