Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
<p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijin...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf |
_version_ | 1811215339970625536 |
---|---|
author | Z. Zhang Z. Zhang Y. Sun Y. Sun Y. Sun C. Chen C. Chen B. You B. You A. Du A. Du W. Xu Y. Li Y. Li Z. Li Z. Li L. Lei L. Lei W. Zhou J. Sun J. Sun Y. Qiu Y. Qiu L. Wei P. Fu Z. Wang Z. Wang |
author_facet | Z. Zhang Z. Zhang Y. Sun Y. Sun Y. Sun C. Chen C. Chen B. You B. You A. Du A. Du W. Xu Y. Li Y. Li Z. Li Z. Li L. Lei L. Lei W. Zhou J. Sun J. Sun Y. Qiu Y. Qiu L. Wei P. Fu Z. Wang Z. Wang |
author_sort | Z. Zhang |
collection | DOAJ |
description | <p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijing. Particularly, we present the first mass spectral characterization of WIOA by integrating online and offline organic aerosol measurements from high-resolution aerosol mass spectrometer. Our results showed that WSOA on average accounted for 59 % of the total OA and comprised dominantly secondary OA (SOA, 69 %). The WSOA composition showed significant changes during the transition season from autumn to winter. While the photochemical-related SOA dominated WSOA (51 %) in early November, the oxidized SOA from biomass burning increased substantially from
8 % to 29 % during the heating season. Comparatively, local primary OA dominantly from cooking aerosol contributed the major fraction of WSOA during clean periods. WIOA showed largely different spectral patterns from WSOA which were characterized by prominent hydrocarbon ions series and low oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.19) and organic mass-to-organic carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">OM</mi><mo>/</mo><mi mathvariant="normal">OC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4bb56872d2275acf09e724b18cdbaabf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00002.svg" width="42pt" height="14pt" src="acp-22-10409-2022-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 1.39) ratios. The nighttime WIOA showed less oxidized properties (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4e2af1a0250a0e0a8308f118d01f5404"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00003.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.16 vs. 0.24) with more pronounced polycyclic aromatic hydrocarbons (PAHs) signals than daytime, indicating the impacts of enhanced coal combustion emissions on WIOA. The evolution process of WSOA and WIOA was further demonstrated by the triangle plot of <span class="inline-formula"><i>f</i><sub>44</sub></span> (fraction of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00004.svg" width="23pt" height="14pt" src="acp-22-10409-2022-ie00004.png"/></svg:svg></span></span> 44 in OA) vs. <span class="inline-formula"><i>f</i><sub>43</sub></span>, <span class="inline-formula"><i>f</i><sub>44</sub></span> vs. <span class="inline-formula"><i>f</i><sub>60</sub></span>, and the Van Krevelen diagram (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">H</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b0b81fa321db5de917056e61c42fdd2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00005.svg" width="24pt" height="14pt" src="acp-22-10409-2022-ie00005.png"/></svg:svg></span></span> vs. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1e88103fd3a4a390c907e8cef533024"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00006.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00006.png"/></svg:svg></span></span>). We also found more oxidized WSOA and an increased contribution of SOA in WSOA compared with previous winter studies in Beijing, indicating that the changes in OA composition due to clean air act have affected the sources and properties of WSOA.</p> |
first_indexed | 2024-04-12T06:19:57Z |
format | Article |
id | doaj.art-089df940692d4956abb24a2ec8e57daa |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-12T06:19:57Z |
publishDate | 2022-08-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-089df940692d4956abb24a2ec8e57daa2022-12-22T03:44:20ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-08-0122104091042310.5194/acp-22-10409-2022Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, ChinaZ. Zhang0Z. Zhang1Y. Sun2Y. Sun3Y. Sun4C. Chen5C. Chen6B. You7B. You8A. Du9A. Du10W. Xu11Y. Li12Y. Li13Z. Li14Z. Li15L. Lei16L. Lei17W. Zhou18J. Sun19J. Sun20Y. Qiu21Y. Qiu22L. Wei23P. Fu24Z. Wang25Z. Wang26State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaInstitute of Surface-Earth System Science, Tianjin University, Tianjin 300072, ChinaState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, ChinaCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China<p>Water-soluble and water-insoluble organic aerosol (WSOA and WIOA) constitute a large fraction of fine particles in winter in northern China, yet our understanding of their sources and processes are still limited. Here we have a comprehensive characterization of WSOA in cold season in Beijing. Particularly, we present the first mass spectral characterization of WIOA by integrating online and offline organic aerosol measurements from high-resolution aerosol mass spectrometer. Our results showed that WSOA on average accounted for 59 % of the total OA and comprised dominantly secondary OA (SOA, 69 %). The WSOA composition showed significant changes during the transition season from autumn to winter. While the photochemical-related SOA dominated WSOA (51 %) in early November, the oxidized SOA from biomass burning increased substantially from 8 % to 29 % during the heating season. Comparatively, local primary OA dominantly from cooking aerosol contributed the major fraction of WSOA during clean periods. WIOA showed largely different spectral patterns from WSOA which were characterized by prominent hydrocarbon ions series and low oxygen-to-carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="528ec602ad41012dbd8700839f42941d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00001.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.19) and organic mass-to-organic carbon (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">OM</mi><mo>/</mo><mi mathvariant="normal">OC</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4bb56872d2275acf09e724b18cdbaabf"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00002.svg" width="42pt" height="14pt" src="acp-22-10409-2022-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 1.39) ratios. The nighttime WIOA showed less oxidized properties (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="4e2af1a0250a0e0a8308f118d01f5404"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00003.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">=</span> 0.16 vs. 0.24) with more pronounced polycyclic aromatic hydrocarbons (PAHs) signals than daytime, indicating the impacts of enhanced coal combustion emissions on WIOA. The evolution process of WSOA and WIOA was further demonstrated by the triangle plot of <span class="inline-formula"><i>f</i><sub>44</sub></span> (fraction of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d93d3cda2a0fb8602765a5ab31f8bec1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00004.svg" width="23pt" height="14pt" src="acp-22-10409-2022-ie00004.png"/></svg:svg></span></span> 44 in OA) vs. <span class="inline-formula"><i>f</i><sub>43</sub></span>, <span class="inline-formula"><i>f</i><sub>44</sub></span> vs. <span class="inline-formula"><i>f</i><sub>60</sub></span>, and the Van Krevelen diagram (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">H</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1b0b81fa321db5de917056e61c42fdd2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00005.svg" width="24pt" height="14pt" src="acp-22-10409-2022-ie00005.png"/></svg:svg></span></span> vs. <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">O</mi><mo>/</mo><mi mathvariant="normal">C</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c1e88103fd3a4a390c907e8cef533024"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-10409-2022-ie00006.svg" width="25pt" height="14pt" src="acp-22-10409-2022-ie00006.png"/></svg:svg></span></span>). We also found more oxidized WSOA and an increased contribution of SOA in WSOA compared with previous winter studies in Beijing, indicating that the changes in OA composition due to clean air act have affected the sources and properties of WSOA.</p>https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf |
spellingShingle | Z. Zhang Z. Zhang Y. Sun Y. Sun Y. Sun C. Chen C. Chen B. You B. You A. Du A. Du W. Xu Y. Li Y. Li Z. Li Z. Li L. Lei L. Lei W. Zhou J. Sun J. Sun Y. Qiu Y. Qiu L. Wei P. Fu Z. Wang Z. Wang Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China Atmospheric Chemistry and Physics |
title | Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China |
title_full | Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China |
title_fullStr | Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China |
title_full_unstemmed | Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China |
title_short | Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China |
title_sort | sources and processes of water soluble and water insoluble organic aerosol in cold season in beijing china |
url | https://acp.copernicus.org/articles/22/10409/2022/acp-22-10409-2022.pdf |
work_keys_str_mv | AT zzhang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT zzhang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT ysun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT cchen sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT cchen sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT byou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT byou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT adu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT adu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT wxu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT yli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT yli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT zli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT zli sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT llei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT llei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT wzhou sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT jsun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT jsun sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT yqiu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT yqiu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT lwei sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT pfu sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT zwang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina AT zwang sourcesandprocessesofwatersolubleandwaterinsolubleorganicaerosolincoldseasoninbeijingchina |