Summary: | Abstract The assessment of AgNPs toxicity in vitro and in vivo models are frequently conflicting and inaccurate. Nevertheless, single cell immunological responses in a heterogenous environment have received little attention. Therefore, in this study, we have performed in-depth analysis which clearly revealed cellular-metal ion association as well as specific immunological response. Our study didn’t show significant population differences in PMBC between control and AgNPs group implying no toxicological response. To confirm it further, deep profiling identified differences in subsets and differentially expressed genes (DEGs) of monocytes, B cells and T cells. Notably, monocyte subsets showed significant upregulation of metallothionein (MT) gene expression such as MT1G, MT1X, MT1E, MT1A, and MT1F. On the other hand, downregulation of pro-inflammatory genes such as IL1β and CCL3 in both CD16 + and CD16- monocyte subsets were observed. This result indicated that AgNPs association with monocyte subsets de-promoted inflammatory responsive genes suggesting no significant toxicity observed in AgNPs treated group. Other cell types such as B cells and T cells also showed negligible differences in their subsets suggesting no toxicity response. Further, AgNPs treated group showed upregulation of cell proliferation, ribosomal synthesis, downregulation of cytokine release, and T cell differentiation inhibition. Overall, our results conclude that treatment of AgNPs to PMBC cells didn’t display immunological related cytotoxicity response and thus motivate researchers to use them actively for biomedical applications.
|