Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records

The dynamic and evolving nature of mobile networks necessitates a proactive approach to security, one that goes beyond traditional methods and embraces innovative strategies such as anomaly detection and prediction. This study delves into the realm of mobile network security and reliability enhancem...

Full description

Bibliographic Details
Main Authors: Zagroz Aziz, Robert Bestak
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/6/1716
_version_ 1797239350414540800
author Zagroz Aziz
Robert Bestak
author_facet Zagroz Aziz
Robert Bestak
author_sort Zagroz Aziz
collection DOAJ
description The dynamic and evolving nature of mobile networks necessitates a proactive approach to security, one that goes beyond traditional methods and embraces innovative strategies such as anomaly detection and prediction. This study delves into the realm of mobile network security and reliability enhancement through the lens of anomaly detection and prediction, leveraging K-means clustering on call detail records (CDRs). By analyzing CDRs, which encapsulate comprehensive information about call activities, messaging, and data usage, this research aimed to unveil hidden patterns indicative of anomalous behavior within mobile networks and security breaches. We utilized 14 million one-year CDR records. The mobile network used had deployed the latest network generation, 5G, with various sources of network elements. Through a systematic analysis of historical CDR data, this study offers insights into the underlying trends and anomalies prevalent in mobile network traffic. Furthermore, by harnessing the predictive capabilities of the K-means algorithm, the proposed framework facilitates the anticipation of future anomalies based on learned patterns, thereby enhancing proactive security measures. The findings of this research can contribute to the advancement of mobile network security by providing a deeper understanding of anomalous behavior and effective prediction mechanisms. The utilization of K-means clustering on CDR data offers a scalable and efficient approach to anomaly detection, with 96% accuracy, making it well suited for network reliability and security applications in large-scale mobile networks for 5G networks and beyond.
first_indexed 2024-04-24T17:50:08Z
format Article
id doaj.art-08a425187c424119b25f34fb081282f5
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-04-24T17:50:08Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-08a425187c424119b25f34fb081282f52024-03-27T14:03:32ZengMDPI AGSensors1424-82202024-03-01246171610.3390/s24061716Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail RecordsZagroz Aziz0Robert Bestak1Faculty of Electrical Engineering, Czech Technical University in Prague, 16607 Prague, Czech RepublicFaculty of Electrical Engineering, Czech Technical University in Prague, 16607 Prague, Czech RepublicThe dynamic and evolving nature of mobile networks necessitates a proactive approach to security, one that goes beyond traditional methods and embraces innovative strategies such as anomaly detection and prediction. This study delves into the realm of mobile network security and reliability enhancement through the lens of anomaly detection and prediction, leveraging K-means clustering on call detail records (CDRs). By analyzing CDRs, which encapsulate comprehensive information about call activities, messaging, and data usage, this research aimed to unveil hidden patterns indicative of anomalous behavior within mobile networks and security breaches. We utilized 14 million one-year CDR records. The mobile network used had deployed the latest network generation, 5G, with various sources of network elements. Through a systematic analysis of historical CDR data, this study offers insights into the underlying trends and anomalies prevalent in mobile network traffic. Furthermore, by harnessing the predictive capabilities of the K-means algorithm, the proposed framework facilitates the anticipation of future anomalies based on learned patterns, thereby enhancing proactive security measures. The findings of this research can contribute to the advancement of mobile network security by providing a deeper understanding of anomalous behavior and effective prediction mechanisms. The utilization of K-means clustering on CDR data offers a scalable and efficient approach to anomaly detection, with 96% accuracy, making it well suited for network reliability and security applications in large-scale mobile networks for 5G networks and beyond.https://www.mdpi.com/1424-8220/24/6/1716call detail recordmobile networksK-means clusteringnetwork securitynetwork anomaly
spellingShingle Zagroz Aziz
Robert Bestak
Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
Sensors
call detail record
mobile networks
K-means clustering
network security
network anomaly
title Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
title_full Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
title_fullStr Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
title_full_unstemmed Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
title_short Insight into Anomaly Detection and Prediction and Mobile Network Security Enhancement Leveraging K-Means Clustering on Call Detail Records
title_sort insight into anomaly detection and prediction and mobile network security enhancement leveraging k means clustering on call detail records
topic call detail record
mobile networks
K-means clustering
network security
network anomaly
url https://www.mdpi.com/1424-8220/24/6/1716
work_keys_str_mv AT zagrozaziz insightintoanomalydetectionandpredictionandmobilenetworksecurityenhancementleveragingkmeansclusteringoncalldetailrecords
AT robertbestak insightintoanomalydetectionandpredictionandmobilenetworksecurityenhancementleveragingkmeansclusteringoncalldetailrecords