Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
The high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excit...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/28/6/2681 |
_version_ | 1797609824801783808 |
---|---|
author | Li Kong Hao Sun Yuhao Nie Yue Yan Runze Wang Qin Ding Shuang Zhang Haihui Yu Guoyan Luan |
author_facet | Li Kong Hao Sun Yuhao Nie Yue Yan Runze Wang Qin Ding Shuang Zhang Haihui Yu Guoyan Luan |
author_sort | Li Kong |
collection | DOAJ |
description | The high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excitation spectra, emission spectra, and fluorescence decay curves. The results reveal that the best phosphor synthesis temperature was 900 °C and that the doping of Eu<sup>3+</sup> and charge compensators (K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>) had no effect on the crystal phase change. SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> has major excitation peaks at 273 nm, 397 nm, and 464 nm, and a main emission peak at 615 nm, making it a potential red fluorescent material to be used as a down converter in UV LEDs (273 nm and 397 nm) and blue light LEDs (464 nm) to achieve Red emission. The emission spectra of Sr<sub>1−y</sub>Mo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:yEu<sup>3+</sup>(y = 0.005, 0.01, 0.02, 0.05, 0.07) excited at 273 were depicted, with the Eu<sup>3+</sup> concentration increasing the luminescence intensity first increases and then decreases, the emission peak intensity of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> achieves its maximum when the doping concentration of Eu<sup>3+</sup> is 1%, and the critical transfer distance is calculated as 25.57 Å. When various charge compensators such as K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and NH<sub>4</sub><sup>+</sup> are added to SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>, the NH<sub>4</sub><sup>+</sup> shows the best effect with the optimal doping concentration of 3wt%. The SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>,NH<sub>4</sub><sup>+</sup> color coordinate is (0.656,0.343), which is close to that of the ideal red light (0.670,0.333). |
first_indexed | 2024-03-11T06:06:59Z |
format | Article |
id | doaj.art-08ef04c1bd934639b846c78be4c9fefd |
institution | Directory Open Access Journal |
issn | 1420-3049 |
language | English |
last_indexed | 2024-03-11T06:06:59Z |
publishDate | 2023-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Molecules |
spelling | doaj.art-08ef04c1bd934639b846c78be4c9fefd2023-11-17T12:53:41ZengMDPI AGMolecules1420-30492023-03-01286268110.3390/molecules28062681Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDsLi Kong0Hao Sun1Yuhao Nie2Yue Yan3Runze Wang4Qin Ding5Shuang Zhang6Haihui Yu7Guoyan Luan8Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaSchool of Chemical Engineering, Northeast Electric Power University, Jilin 132012, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaThe high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excitation spectra, emission spectra, and fluorescence decay curves. The results reveal that the best phosphor synthesis temperature was 900 °C and that the doping of Eu<sup>3+</sup> and charge compensators (K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>) had no effect on the crystal phase change. SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> has major excitation peaks at 273 nm, 397 nm, and 464 nm, and a main emission peak at 615 nm, making it a potential red fluorescent material to be used as a down converter in UV LEDs (273 nm and 397 nm) and blue light LEDs (464 nm) to achieve Red emission. The emission spectra of Sr<sub>1−y</sub>Mo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:yEu<sup>3+</sup>(y = 0.005, 0.01, 0.02, 0.05, 0.07) excited at 273 were depicted, with the Eu<sup>3+</sup> concentration increasing the luminescence intensity first increases and then decreases, the emission peak intensity of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> achieves its maximum when the doping concentration of Eu<sup>3+</sup> is 1%, and the critical transfer distance is calculated as 25.57 Å. When various charge compensators such as K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and NH<sub>4</sub><sup>+</sup> are added to SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>, the NH<sub>4</sub><sup>+</sup> shows the best effect with the optimal doping concentration of 3wt%. The SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>,NH<sub>4</sub><sup>+</sup> color coordinate is (0.656,0.343), which is close to that of the ideal red light (0.670,0.333).https://www.mdpi.com/1420-3049/28/6/2681SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>charge compensatorLuminescence performancew-LED |
spellingShingle | Li Kong Hao Sun Yuhao Nie Yue Yan Runze Wang Qin Ding Shuang Zhang Haihui Yu Guoyan Luan Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs Molecules SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> charge compensator Luminescence performance w-LED |
title | Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs |
title_full | Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs |
title_fullStr | Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs |
title_full_unstemmed | Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs |
title_short | Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs |
title_sort | luminescent properties and charge compensator effects of srmo sub 0 5 sub w sub 0 5 sub o sub 4 sub eu sup 3 sup for white light leds |
topic | SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> charge compensator Luminescence performance w-LED |
url | https://www.mdpi.com/1420-3049/28/6/2681 |
work_keys_str_mv | AT likong luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT haosun luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT yuhaonie luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT yueyan luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT runzewang luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT qinding luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT shuangzhang luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT haihuiyu luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds AT guoyanluan luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds |