Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs

The high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excit...

Full description

Bibliographic Details
Main Authors: Li Kong, Hao Sun, Yuhao Nie, Yue Yan, Runze Wang, Qin Ding, Shuang Zhang, Haihui Yu, Guoyan Luan
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/6/2681
_version_ 1797609824801783808
author Li Kong
Hao Sun
Yuhao Nie
Yue Yan
Runze Wang
Qin Ding
Shuang Zhang
Haihui Yu
Guoyan Luan
author_facet Li Kong
Hao Sun
Yuhao Nie
Yue Yan
Runze Wang
Qin Ding
Shuang Zhang
Haihui Yu
Guoyan Luan
author_sort Li Kong
collection DOAJ
description The high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excitation spectra, emission spectra, and fluorescence decay curves. The results reveal that the best phosphor synthesis temperature was 900 °C and that the doping of Eu<sup>3+</sup> and charge compensators (K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>) had no effect on the crystal phase change. SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> has major excitation peaks at 273 nm, 397 nm, and 464 nm, and a main emission peak at 615 nm, making it a potential red fluorescent material to be used as a down converter in UV LEDs (273 nm and 397 nm) and blue light LEDs (464 nm) to achieve Red emission. The emission spectra of Sr<sub>1−y</sub>Mo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:yEu<sup>3+</sup>(y = 0.005, 0.01, 0.02, 0.05, 0.07) excited at 273 were depicted, with the Eu<sup>3+</sup> concentration increasing the luminescence intensity first increases and then decreases, the emission peak intensity of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> achieves its maximum when the doping concentration of Eu<sup>3+</sup> is 1%, and the critical transfer distance is calculated as 25.57 Å. When various charge compensators such as K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and NH<sub>4</sub><sup>+</sup> are added to SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>, the NH<sub>4</sub><sup>+</sup> shows the best effect with the optimal doping concentration of 3wt%. The SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>,NH<sub>4</sub><sup>+</sup> color coordinate is (0.656,0.343), which is close to that of the ideal red light (0.670,0.333).
first_indexed 2024-03-11T06:06:59Z
format Article
id doaj.art-08ef04c1bd934639b846c78be4c9fefd
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-11T06:06:59Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-08ef04c1bd934639b846c78be4c9fefd2023-11-17T12:53:41ZengMDPI AGMolecules1420-30492023-03-01286268110.3390/molecules28062681Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDsLi Kong0Hao Sun1Yuhao Nie2Yue Yan3Runze Wang4Qin Ding5Shuang Zhang6Haihui Yu7Guoyan Luan8Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaSchool of Chemical Engineering, Northeast Electric Power University, Jilin 132012, ChinaInstitute of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, ChinaThe high-temperature solid-phase approach was used to synthesize Eu<sup>3+</sup>-doped SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub> phosphors, whose morphological structure and luminescence properties were then characterized by XRD, SEM, FT-IR, excitation spectra, emission spectra, and fluorescence decay curves. The results reveal that the best phosphor synthesis temperature was 900 °C and that the doping of Eu<sup>3+</sup> and charge compensators (K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>) had no effect on the crystal phase change. SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> has major excitation peaks at 273 nm, 397 nm, and 464 nm, and a main emission peak at 615 nm, making it a potential red fluorescent material to be used as a down converter in UV LEDs (273 nm and 397 nm) and blue light LEDs (464 nm) to achieve Red emission. The emission spectra of Sr<sub>1−y</sub>Mo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:yEu<sup>3+</sup>(y = 0.005, 0.01, 0.02, 0.05, 0.07) excited at 273 were depicted, with the Eu<sup>3+</sup> concentration increasing the luminescence intensity first increases and then decreases, the emission peak intensity of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> achieves its maximum when the doping concentration of Eu<sup>3+</sup> is 1%, and the critical transfer distance is calculated as 25.57 Å. When various charge compensators such as K<sup>+</sup>, Li<sup>+</sup>, Na<sup>+</sup>, and NH<sub>4</sub><sup>+</sup> are added to SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>, the NH<sub>4</sub><sup>+</sup> shows the best effect with the optimal doping concentration of 3wt%. The SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>,NH<sub>4</sub><sup>+</sup> color coordinate is (0.656,0.343), which is close to that of the ideal red light (0.670,0.333).https://www.mdpi.com/1420-3049/28/6/2681SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>charge compensatorLuminescence performancew-LED
spellingShingle Li Kong
Hao Sun
Yuhao Nie
Yue Yan
Runze Wang
Qin Ding
Shuang Zhang
Haihui Yu
Guoyan Luan
Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
Molecules
SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>
charge compensator
Luminescence performance
w-LED
title Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
title_full Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
title_fullStr Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
title_full_unstemmed Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
title_short Luminescent Properties and Charge Compensator Effects of SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup> for White Light LEDs
title_sort luminescent properties and charge compensator effects of srmo sub 0 5 sub w sub 0 5 sub o sub 4 sub eu sup 3 sup for white light leds
topic SrMo<sub>0.5</sub>W<sub>0.5</sub>O<sub>4</sub>:Eu<sup>3+</sup>
charge compensator
Luminescence performance
w-LED
url https://www.mdpi.com/1420-3049/28/6/2681
work_keys_str_mv AT likong luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT haosun luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT yuhaonie luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT yueyan luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT runzewang luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT qinding luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT shuangzhang luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT haihuiyu luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds
AT guoyanluan luminescentpropertiesandchargecompensatoreffectsofsrmosub05subwsub05subosub4subeusup3supforwhitelightleds