A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water

<p>We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (<span class="inline-formula"><i>T</i>)</span> conditions. Three types of chemically homogeneous cellulose samples are used as surrogates...

Full description

Bibliographic Details
Main Authors: N. Hiranuma, K. Adachi, D. M. Bell, F. Belosi, H. Beydoun, B. Bhaduri, H. Bingemer, C. Budke, H.-C. Clemen, F. Conen, K. M. Cory, J. Curtius, P. J. DeMott, O. Eppers, S. Grawe, S. Hartmann, N. Hoffmann, K. Höhler, E. Jantsch, A. Kiselev, T. Koop, G. Kulkarni, A. Mayer, M. Murakami, B. J. Murray, A. Nicosia, M. D. Petters, M. Piazza, M. Polen, N. Reicher, Y. Rudich, A. Saito, G. Santachiara, T. Schiebel, G. P. Schill, J. Schneider, L. Segev, E. Stopelli, R. C. Sullivan, K. Suski, M. Szakáll, T. Tajiri, H. Taylor, Y. Tobo, R. Ullrich, D. Weber, H. Wex, T. F. Whale, C. L. Whiteside, K. Yamashita, A. Zelenyuk, O. Möhler
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/4823/2019/acp-19-4823-2019.pdf
_version_ 1828528969435054080
author N. Hiranuma
K. Adachi
D. M. Bell
D. M. Bell
F. Belosi
H. Beydoun
B. Bhaduri
B. Bhaduri
H. Bingemer
C. Budke
H.-C. Clemen
F. Conen
K. M. Cory
J. Curtius
P. J. DeMott
O. Eppers
S. Grawe
S. Hartmann
N. Hoffmann
K. Höhler
E. Jantsch
A. Kiselev
T. Koop
G. Kulkarni
A. Mayer
M. Murakami
M. Murakami
B. J. Murray
A. Nicosia
A. Nicosia
M. D. Petters
M. Piazza
M. Polen
N. Reicher
Y. Rudich
A. Saito
G. Santachiara
T. Schiebel
G. P. Schill
J. Schneider
L. Segev
E. Stopelli
E. Stopelli
R. C. Sullivan
K. Suski
K. Suski
M. Szakáll
T. Tajiri
H. Taylor
Y. Tobo
Y. Tobo
R. Ullrich
D. Weber
H. Wex
T. F. Whale
C. L. Whiteside
K. Yamashita
K. Yamashita
A. Zelenyuk
O. Möhler
author_facet N. Hiranuma
K. Adachi
D. M. Bell
D. M. Bell
F. Belosi
H. Beydoun
B. Bhaduri
B. Bhaduri
H. Bingemer
C. Budke
H.-C. Clemen
F. Conen
K. M. Cory
J. Curtius
P. J. DeMott
O. Eppers
S. Grawe
S. Hartmann
N. Hoffmann
K. Höhler
E. Jantsch
A. Kiselev
T. Koop
G. Kulkarni
A. Mayer
M. Murakami
M. Murakami
B. J. Murray
A. Nicosia
A. Nicosia
M. D. Petters
M. Piazza
M. Polen
N. Reicher
Y. Rudich
A. Saito
G. Santachiara
T. Schiebel
G. P. Schill
J. Schneider
L. Segev
E. Stopelli
E. Stopelli
R. C. Sullivan
K. Suski
K. Suski
M. Szakáll
T. Tajiri
H. Taylor
Y. Tobo
Y. Tobo
R. Ullrich
D. Weber
H. Wex
T. F. Whale
C. L. Whiteside
K. Yamashita
K. Yamashita
A. Zelenyuk
O. Möhler
author_sort N. Hiranuma
collection DOAJ
description <p>We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (<span class="inline-formula"><i>T</i>)</span> conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating <span class="inline-formula"><i>T</i></span>-binned (1&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) data over a wide <span class="inline-formula"><i>T</i></span> range (<span class="inline-formula">−</span>36&thinsp;<span class="inline-formula"><sup>∘</sup></span>C&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mi>T</mi><mo>&lt;</mo><mo>-</mo><mn mathvariant="normal">4</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="3b7a6b6ea4e55ac45ae2885dad986a21"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-4823-2019-ie00001.svg" width="46pt" height="10pt" src="acp-19-4823-2019-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of <span class="inline-formula"><i>T</i></span>, <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span>. Additionally, we also compared the <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span> values and the freezing spectral slope parameter (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">log</mi><mo>(</mo><msub><mi>n</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi mathvariant="normal">geo</mi></mrow></msub><mo>)</mo><mo>/</mo><mi mathvariant="normal">Δ</mi><mi>T</mi><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8ec71e136abcca72f65a4b88c200015b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-4823-2019-ie00002.svg" width="83pt" height="16pt" src="acp-19-4823-2019-ie00002.png"/></svg:svg></span></span> from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans <span class="inline-formula">≈</span>&thinsp;10&thinsp;<span class="inline-formula"><sup>∘</sup></span>C. Despite given uncertainties within each instrument technique, the overall trend of the <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span> spectrum traced by the <span class="inline-formula"><i>T</i></span>-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span>.</p>
first_indexed 2024-12-11T22:00:25Z
format Article
id doaj.art-08f06bde9b57423cbfa05e229f398727
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-11T22:00:25Z
publishDate 2019-04-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-08f06bde9b57423cbfa05e229f3987272022-12-22T00:49:07ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01194823484910.5194/acp-19-4823-2019A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in waterN. Hiranuma0K. Adachi1D. M. Bell2D. M. Bell3F. Belosi4H. Beydoun5B. Bhaduri6B. Bhaduri7H. Bingemer8C. Budke9H.-C. Clemen10F. Conen11K. M. Cory12J. Curtius13P. J. DeMott14O. Eppers15S. Grawe16S. Hartmann17N. Hoffmann18K. Höhler19E. Jantsch20A. Kiselev21T. Koop22G. Kulkarni23A. Mayer24M. Murakami25M. Murakami26B. J. Murray27A. Nicosia28A. Nicosia29M. D. Petters30M. Piazza31M. Polen32N. Reicher33Y. Rudich34A. Saito35G. Santachiara36T. Schiebel37G. P. Schill38J. Schneider39L. Segev40E. Stopelli41E. Stopelli42R. C. Sullivan43K. Suski44K. Suski45M. Szakáll46T. Tajiri47H. Taylor48Y. Tobo49Y. Tobo50R. Ullrich51D. Weber52H. Wex53T. F. Whale54C. L. Whiteside55K. Yamashita56K. Yamashita57A. Zelenyuk58O. Möhler59Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USAMeteorological Research Institute (MRI), Tsukuba, JapanPacific Northwest National Laboratory, Richland, WA, USAnow at: Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, SwitzerlandInstitute of Atmospheric Sciences and Climate, National Research Council, Bologna, ItalyCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USADepartment of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israelnow at: Department of Soil and Water Sciences, Hebrew University of Jerusalem, IsraelInstitute for Atmospheric and Environmental Science, Goethe University of Frankfurt, Frankfurt am Main, GermanyFaculty of Chemistry, Bielefeld University, Bielefeld, GermanyMax-Planck-Institut für Chemie, Particle Chemistry Department, Mainz, GermanyEnvironmental Geosciences, University of Basel, Basel, SwitzerlandDepartment of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USAInstitute for Atmospheric and Environmental Science, Goethe University of Frankfurt, Frankfurt am Main, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAInstitute for Atmospheric Physics, University of Mainz, Mainz, GermanyLeibniz Institute for Tropospheric Research, Leipzig, GermanyLeibniz Institute for Tropospheric Research, Leipzig, GermanyInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, GermanyFaculty of Chemistry, Bielefeld University, Bielefeld, GermanyInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, GermanyFaculty of Chemistry, Bielefeld University, Bielefeld, GermanyPacific Northwest National Laboratory, Richland, WA, USAInstitute for Atmospheric Physics, University of Mainz, Mainz, GermanyMeteorological Research Institute (MRI), Tsukuba, Japannow at: Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, JapanInstitute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UKInstitute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italynow at: Laboratoire de Météorologie Physique (Lamp-CNRS) Aubiere, FranceDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University Raleigh, Raleigh, NC, USAInstitute of Atmospheric Sciences and Climate, National Research Council, Bologna, ItalyCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USADepartment of Earth and Planetary Sciences, Weizmann Institute, Rehovot, IsraelDepartment of Earth and Planetary Sciences, Weizmann Institute, Rehovot, IsraelMeteorological Research Institute (MRI), Tsukuba, JapanInstitute of Atmospheric Sciences and Climate, National Research Council, Bologna, ItalyInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, GermanyDepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAMax-Planck-Institut für Chemie, Particle Chemistry Department, Mainz, GermanyDepartment of Earth and Planetary Sciences, Weizmann Institute, Rehovot, IsraelEnvironmental Geosciences, University of Basel, Basel, Switzerlandnow at: Water Resources and Drinking Water Department, Eawag, Dübendorf, SwitzerlandCenter for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USAPacific Northwest National Laboratory, Richland, WA, USADepartment of Atmospheric Science, Colorado State University, Fort Collins, CO, USAInstitute for Atmospheric Physics, University of Mainz, Mainz, GermanyMeteorological Research Institute (MRI), Tsukuba, JapanDepartment of Marine, Earth, and Atmospheric Sciences, North Carolina State University Raleigh, Raleigh, NC, USANational Institute of Polar Research, Tachikawa, Tokyo, JapanDepartment of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, JapanInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, GermanyInstitute for Atmospheric and Environmental Science, Goethe University of Frankfurt, Frankfurt am Main, GermanyLeibniz Institute for Tropospheric Research, Leipzig, GermanyInstitute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UKDepartment of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USAMeteorological Research Institute (MRI), Tsukuba, Japannow at: Snow and Ice Research Center, National Research Institute for Earth Science and Disaster, Nagaoka, JapanPacific Northwest National Laboratory, Richland, WA, USAInstitute for Meteorology and Climate Research – Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany<p>We present the laboratory results of immersion freezing efficiencies of cellulose particles at supercooled temperature (<span class="inline-formula"><i>T</i>)</span> conditions. Three types of chemically homogeneous cellulose samples are used as surrogates that represent supermicron and submicron ice-nucleating plant structural polymers. These samples include microcrystalline cellulose (MCC), fibrous cellulose (FC) and nanocrystalline cellulose (NCC). Our immersion freezing dataset includes data from various ice nucleation measurement techniques available at 17 different institutions, including nine dry dispersion and 11 aqueous suspension techniques. With a total of 20 methods, we performed systematic accuracy and precision analysis of measurements from all 20 measurement techniques by evaluating <span class="inline-formula"><i>T</i></span>-binned (1&thinsp;<span class="inline-formula"><sup>∘</sup></span>C) data over a wide <span class="inline-formula"><i>T</i></span> range (<span class="inline-formula">−</span>36&thinsp;<span class="inline-formula"><sup>∘</sup></span>C&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mi>T</mi><mo>&lt;</mo><mo>-</mo><mn mathvariant="normal">4</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="46pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="3b7a6b6ea4e55ac45ae2885dad986a21"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-4823-2019-ie00001.svg" width="46pt" height="10pt" src="acp-19-4823-2019-ie00001.png"/></svg:svg></span></span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C). Specifically, we intercompared the geometric surface area-based ice nucleation active surface site (INAS) density data derived from our measurements as a function of <span class="inline-formula"><i>T</i></span>, <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span>. Additionally, we also compared the <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span> values and the freezing spectral slope parameter (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><mi mathvariant="normal">log</mi><mo>(</mo><msub><mi>n</mi><mrow><mi mathvariant="normal">s</mi><mo>,</mo><mi mathvariant="normal">geo</mi></mrow></msub><mo>)</mo><mo>/</mo><mi mathvariant="normal">Δ</mi><mi>T</mi><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="8ec71e136abcca72f65a4b88c200015b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-4823-2019-ie00002.svg" width="83pt" height="16pt" src="acp-19-4823-2019-ie00002.png"/></svg:svg></span></span> from our measurements to previous literature results. Results show all three cellulose materials are reasonably ice active. The freezing efficiencies of NCC samples agree reasonably well, whereas the diversity for the other two samples spans <span class="inline-formula">≈</span>&thinsp;10&thinsp;<span class="inline-formula"><sup>∘</sup></span>C. Despite given uncertainties within each instrument technique, the overall trend of the <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span> spectrum traced by the <span class="inline-formula"><i>T</i></span>-binned average of measurements suggests that predominantly supermicron-sized cellulose particles (MCC and FC) generally act as more efficient ice-nucleating particles (INPs) than NCC with about 1 order of magnitude higher <span class="inline-formula"><i>n</i><sub>s,geo</sub>(<i>T</i>)</span>.</p>https://www.atmos-chem-phys.net/19/4823/2019/acp-19-4823-2019.pdf
spellingShingle N. Hiranuma
K. Adachi
D. M. Bell
D. M. Bell
F. Belosi
H. Beydoun
B. Bhaduri
B. Bhaduri
H. Bingemer
C. Budke
H.-C. Clemen
F. Conen
K. M. Cory
J. Curtius
P. J. DeMott
O. Eppers
S. Grawe
S. Hartmann
N. Hoffmann
K. Höhler
E. Jantsch
A. Kiselev
T. Koop
G. Kulkarni
A. Mayer
M. Murakami
M. Murakami
B. J. Murray
A. Nicosia
A. Nicosia
M. D. Petters
M. Piazza
M. Polen
N. Reicher
Y. Rudich
A. Saito
G. Santachiara
T. Schiebel
G. P. Schill
J. Schneider
L. Segev
E. Stopelli
E. Stopelli
R. C. Sullivan
K. Suski
K. Suski
M. Szakáll
T. Tajiri
H. Taylor
Y. Tobo
Y. Tobo
R. Ullrich
D. Weber
H. Wex
T. F. Whale
C. L. Whiteside
K. Yamashita
K. Yamashita
A. Zelenyuk
O. Möhler
A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
Atmospheric Chemistry and Physics
title A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
title_full A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
title_fullStr A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
title_full_unstemmed A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
title_short A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
title_sort comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water
url https://www.atmos-chem-phys.net/19/4823/2019/acp-19-4823-2019.pdf
work_keys_str_mv AT nhiranuma acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kadachi acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dmbell acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dmbell acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT fbelosi acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hbeydoun acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bbhaduri acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bbhaduri acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hbingemer acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT cbudke acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hcclemen acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT fconen acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kmcory acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT jcurtius acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT pjdemott acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT oeppers acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT sgrawe acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT shartmann acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT nhoffmann acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT khohler acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ejantsch acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT akiselev acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tkoop acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gkulkarni acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT amayer acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mmurakami acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mmurakami acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bjmurray acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT anicosia acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT anicosia acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mdpetters acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mpiazza acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mpolen acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT nreicher acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT yrudich acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT asaito acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gsantachiara acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tschiebel acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gpschill acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT jschneider acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT lsegev acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT estopelli acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT estopelli acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT rcsullivan acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ksuski acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ksuski acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mszakall acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ttajiri acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT htaylor acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ytobo acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ytobo acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT rullrich acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dweber acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hwex acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tfwhale acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT clwhiteside acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kyamashita acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kyamashita acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT azelenyuk acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT omohler acomprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT nhiranuma comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kadachi comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dmbell comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dmbell comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT fbelosi comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hbeydoun comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bbhaduri comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bbhaduri comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hbingemer comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT cbudke comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hcclemen comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT fconen comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kmcory comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT jcurtius comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT pjdemott comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT oeppers comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT sgrawe comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT shartmann comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT nhoffmann comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT khohler comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ejantsch comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT akiselev comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tkoop comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gkulkarni comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT amayer comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mmurakami comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mmurakami comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT bjmurray comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT anicosia comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT anicosia comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mdpetters comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mpiazza comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mpolen comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT nreicher comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT yrudich comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT asaito comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gsantachiara comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tschiebel comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT gpschill comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT jschneider comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT lsegev comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT estopelli comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT estopelli comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT rcsullivan comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ksuski comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ksuski comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT mszakall comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ttajiri comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT htaylor comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ytobo comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT ytobo comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT rullrich comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT dweber comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT hwex comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT tfwhale comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT clwhiteside comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kyamashita comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT kyamashita comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT azelenyuk comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater
AT omohler comprehensivecharacterizationoficenucleationbythreedifferenttypesofcelluloseparticlesimmersedinwater