Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms
Novel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass, with applications to quantum non-linear optics and quantum simulation. A strong challenge for the experimental...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2024-01-01
|
Series: | New Journal of Physics |
Subjects: | |
Online Access: | https://doi.org/10.1088/1367-2630/ad23a4 |
_version_ | 1827350862429683712 |
---|---|
author | Adrien Bouscal Malik Kemiche Sukanya Mahapatra Nikos Fayard Jérémy Berroir Tridib Ray Jean-Jacques Greffet Fabrice Raineri Ariel Levenson Kamel Bencheikh Christophe Sauvan Alban Urvoy Julien Laurat |
author_facet | Adrien Bouscal Malik Kemiche Sukanya Mahapatra Nikos Fayard Jérémy Berroir Tridib Ray Jean-Jacques Greffet Fabrice Raineri Ariel Levenson Kamel Bencheikh Christophe Sauvan Alban Urvoy Julien Laurat |
author_sort | Adrien Bouscal |
collection | DOAJ |
description | Novel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass, with applications to quantum non-linear optics and quantum simulation. A strong challenge for the experimental development of this emerging waveguide-QED field of research is to combine facilitated optical access for atom transport, atom trapping via guided modes and robustness to inherent nanofabrication imperfections. In this endeavor, here we propose to interface Rubidium atoms with a photonic-crystal waveguide based on a large-index GaInP slab. With a specifically tailored half-W1 design, we show that a large chiral coupling to the waveguide can be obtained and guided modes can be used to form two-color dipole traps for atoms down to 115 nm from the edge of the structure. This optimized device should greatly improve the level of experimental control and facilitate the atom integration. |
first_indexed | 2024-03-08T01:48:39Z |
format | Article |
id | doaj.art-08f320aa4502447683d044ce203d8a74 |
institution | Directory Open Access Journal |
issn | 1367-2630 |
language | English |
last_indexed | 2024-03-08T01:48:39Z |
publishDate | 2024-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | New Journal of Physics |
spelling | doaj.art-08f320aa4502447683d044ce203d8a742024-02-14T11:28:57ZengIOP PublishingNew Journal of Physics1367-26302024-01-0126202302610.1088/1367-2630/ad23a4Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atomsAdrien Bouscal0https://orcid.org/0009-0001-1733-2031Malik Kemiche1https://orcid.org/0000-0002-5970-0613Sukanya Mahapatra2Nikos Fayard3https://orcid.org/0000-0002-8819-3526Jérémy Berroir4https://orcid.org/0000-0001-8254-3778Tridib Ray5https://orcid.org/0000-0002-8802-452XJean-Jacques Greffet6https://orcid.org/0000-0002-4048-2150Fabrice Raineri7https://orcid.org/0000-0001-9878-3434Ariel Levenson8Kamel Bencheikh9https://orcid.org/0000-0001-5492-1428Christophe Sauvan10https://orcid.org/0000-0002-8360-9254Alban Urvoy11https://orcid.org/0000-0002-6930-8068Julien Laurat12https://orcid.org/0000-0001-8318-6514Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France , 4 Place Jussieu, 75005 Paris, FranceCentre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay , 91120 Palaiseau, France; IMEP-LAHC, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP , 38000 Grenoble, FranceCentre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay , 91120 Palaiseau, FranceUniversité Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry , 91127 Palaiseau, France; Université Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, CentraleSupélec, LuMIn , Orsay 91190, FranceLaboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France , 4 Place Jussieu, 75005 Paris, FranceLaboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France , 4 Place Jussieu, 75005 Paris, FranceUniversité Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry , 91127 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay , 91120 Palaiseau, France; Universiteé Côte d’Azur, Institut de Physique de Nice, CNRS-UMR 7010 , Nice 06200, FranceCentre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay , 91120 Palaiseau, FranceCentre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay , 91120 Palaiseau, FranceUniversité Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry , 91127 Palaiseau, FranceLaboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France , 4 Place Jussieu, 75005 Paris, FranceLaboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France , 4 Place Jussieu, 75005 Paris, FranceNovel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass, with applications to quantum non-linear optics and quantum simulation. A strong challenge for the experimental development of this emerging waveguide-QED field of research is to combine facilitated optical access for atom transport, atom trapping via guided modes and robustness to inherent nanofabrication imperfections. In this endeavor, here we propose to interface Rubidium atoms with a photonic-crystal waveguide based on a large-index GaInP slab. With a specifically tailored half-W1 design, we show that a large chiral coupling to the waveguide can be obtained and guided modes can be used to form two-color dipole traps for atoms down to 115 nm from the edge of the structure. This optimized device should greatly improve the level of experimental control and facilitate the atom integration.https://doi.org/10.1088/1367-2630/ad23a4waveguide QEDatom nanophotonicscold atoms |
spellingShingle | Adrien Bouscal Malik Kemiche Sukanya Mahapatra Nikos Fayard Jérémy Berroir Tridib Ray Jean-Jacques Greffet Fabrice Raineri Ariel Levenson Kamel Bencheikh Christophe Sauvan Alban Urvoy Julien Laurat Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms New Journal of Physics waveguide QED atom nanophotonics cold atoms |
title | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
title_full | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
title_fullStr | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
title_full_unstemmed | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
title_short | Systematic design of a robust half-W1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
title_sort | systematic design of a robust half w1 photonic crystal waveguide for interfacing slow light and trapped cold atoms |
topic | waveguide QED atom nanophotonics cold atoms |
url | https://doi.org/10.1088/1367-2630/ad23a4 |
work_keys_str_mv | AT adrienbouscal systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT malikkemiche systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT sukanyamahapatra systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT nikosfayard systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT jeremyberroir systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT tridibray systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT jeanjacquesgreffet systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT fabriceraineri systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT ariellevenson systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT kamelbencheikh systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT christophesauvan systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT albanurvoy systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms AT julienlaurat systematicdesignofarobusthalfw1photoniccrystalwaveguideforinterfacingslowlightandtrappedcoldatoms |