Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has be...

Full description

Bibliographic Details
Main Authors: Andrew Ross, Matthew Myers, Bobby Pejcic
Format: Article
Language:English
Published: MDPI AG 2009-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/9/8/6232/
Description
Summary:The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10-100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed.
ISSN:1424-8220