Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates
Summary: Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitr...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-05-01
|
Series: | Cell Reports |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211124720305489 |
_version_ | 1818531397600542720 |
---|---|
author | Nicola Micali Suel-Kee Kim Marcelo Diaz-Bustamante Genevieve Stein-O’Brien Seungmae Seo Joo-Heon Shin Brian G. Rash Shaojie Ma Yanhong Wang Nicolas A. Olivares Jon I. Arellano Kristen R. Maynard Elana J. Fertig Alan J. Cross Roland W. Bürli Nicholas J. Brandon Daniel R. Weinberger Joshua G. Chenoweth Daniel J. Hoeppner Nenad Sestan Pasko Rakic Carlo Colantuoni Ronald D. McKay |
author_facet | Nicola Micali Suel-Kee Kim Marcelo Diaz-Bustamante Genevieve Stein-O’Brien Seungmae Seo Joo-Heon Shin Brian G. Rash Shaojie Ma Yanhong Wang Nicolas A. Olivares Jon I. Arellano Kristen R. Maynard Elana J. Fertig Alan J. Cross Roland W. Bürli Nicholas J. Brandon Daniel R. Weinberger Joshua G. Chenoweth Daniel J. Hoeppner Nenad Sestan Pasko Rakic Carlo Colantuoni Ronald D. McKay |
author_sort | Nicola Micali |
collection | DOAJ |
description | Summary: Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon. |
first_indexed | 2024-12-11T17:31:56Z |
format | Article |
id | doaj.art-09028c601a8b4575b9d6ec90dadc6fb0 |
institution | Directory Open Access Journal |
issn | 2211-1247 |
language | English |
last_indexed | 2024-12-11T17:31:56Z |
publishDate | 2020-05-01 |
publisher | Elsevier |
record_format | Article |
series | Cell Reports |
spelling | doaj.art-09028c601a8b4575b9d6ec90dadc6fb02022-12-22T00:56:47ZengElsevierCell Reports2211-12472020-05-01315Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal FatesNicola Micali0Suel-Kee Kim1Marcelo Diaz-Bustamante2Genevieve Stein-O’Brien3Seungmae Seo4Joo-Heon Shin5Brian G. Rash6Shaojie Ma7Yanhong Wang8Nicolas A. Olivares9Jon I. Arellano10Kristen R. Maynard11Elana J. Fertig12Alan J. Cross13Roland W. Bürli14Nicholas J. Brandon15Daniel R. Weinberger16Joshua G. Chenoweth17Daniel J. Hoeppner18Nenad Sestan19Pasko Rakic20Carlo Colantuoni21Ronald D. McKay22Lieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Corresponding authorLieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USADepartment of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USADepartments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USADepartment of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USADepartment of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Applied Mathematics and Statistics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USAAstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USAAstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USAAstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 024515, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USALieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Astellas Research Institute of America, 3565 General Atomics Ct., Ste. 200, San Diego, CA 92121, USADepartment of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Departments of Comparative Medicine, Genetics, and Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USADepartment of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA; Corresponding authorLieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Corresponding authorLieber Institute for Brain Development, 855 North Wolfe St., Baltimore, MD 21205, USA; Corresponding authorSummary: Better understanding of the progression of neural stem cells (NSCs) in the developing cerebral cortex is important for modeling neurogenesis and defining the pathogenesis of neuropsychiatric disorders. Here, we use RNA sequencing, cell imaging, and lineage tracing of mouse and human in vitro NSCs and monkey brain sections to model the generation of cortical neuronal fates. We show that conserved signaling mechanisms regulate the acute transition from proliferative NSCs to committed glutamatergic excitatory neurons. As human telencephalic NSCs develop from pluripotency in vitro, they transition through organizer states that spatially pattern the cortex before generating glutamatergic precursor fates. NSCs derived from multiple human pluripotent lines vary in these early patterning states, leading differentially to dorsal or ventral telencephalic fates. This work furthers systematic analyses of the earliest patterning events that generate the major neuronal trajectories of the human telencephalon.http://www.sciencedirect.com/science/article/pii/S2211124720305489neural stem cellFGF2BMPneural transcriptional dynamicsneurogenesisEGFR |
spellingShingle | Nicola Micali Suel-Kee Kim Marcelo Diaz-Bustamante Genevieve Stein-O’Brien Seungmae Seo Joo-Heon Shin Brian G. Rash Shaojie Ma Yanhong Wang Nicolas A. Olivares Jon I. Arellano Kristen R. Maynard Elana J. Fertig Alan J. Cross Roland W. Bürli Nicholas J. Brandon Daniel R. Weinberger Joshua G. Chenoweth Daniel J. Hoeppner Nenad Sestan Pasko Rakic Carlo Colantuoni Ronald D. McKay Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates Cell Reports neural stem cell FGF2 BMP neural transcriptional dynamics neurogenesis EGFR |
title | Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates |
title_full | Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates |
title_fullStr | Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates |
title_full_unstemmed | Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates |
title_short | Variation of Human Neural Stem Cells Generating Organizer States In Vitro before Committing to Cortical Excitatory or Inhibitory Neuronal Fates |
title_sort | variation of human neural stem cells generating organizer states in vitro before committing to cortical excitatory or inhibitory neuronal fates |
topic | neural stem cell FGF2 BMP neural transcriptional dynamics neurogenesis EGFR |
url | http://www.sciencedirect.com/science/article/pii/S2211124720305489 |
work_keys_str_mv | AT nicolamicali variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT suelkeekim variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT marcelodiazbustamante variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT genevievesteinobrien variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT seungmaeseo variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT jooheonshin variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT briangrash variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT shaojiema variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT yanhongwang variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT nicolasaolivares variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT joniarellano variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT kristenrmaynard variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT elanajfertig variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT alanjcross variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT rolandwburli variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT nicholasjbrandon variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT danielrweinberger variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT joshuagchenoweth variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT danieljhoeppner variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT nenadsestan variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT paskorakic variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT carlocolantuoni variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates AT ronalddmckay variationofhumanneuralstemcellsgeneratingorganizerstatesinvitrobeforecommittingtocorticalexcitatoryorinhibitoryneuronalfates |