EGF-mediated suppression of cell extrusion during mucosal damage attenuates opportunistic fungal invasion

Summary: Severe and often fatal opportunistic fungal infections arise frequently following mucosal damage caused by trauma or cytotoxic chemotherapy. Interaction of fungal pathogens with epithelial cells that comprise mucosae is a key early event associated with invasion, and, therefore, enhancing e...

Full description

Bibliographic Details
Main Authors: Sebastian Wurster, Oscar E. Ruiz, Krystin M. Samms, Alexander M. Tatara, Nathaniel D. Albert, Philip H. Kahan, Anh Trinh Nguyen, Antonios G. Mikos, Dimitrios P. Kontoyiannis, George T. Eisenhoffer
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721002102
Description
Summary:Summary: Severe and often fatal opportunistic fungal infections arise frequently following mucosal damage caused by trauma or cytotoxic chemotherapy. Interaction of fungal pathogens with epithelial cells that comprise mucosae is a key early event associated with invasion, and, therefore, enhancing epithelial defense mechanisms may mitigate infection. Here, we establish a model of mold and yeast infection mediated by inducible epithelial cell loss in larval zebrafish. Epithelial cell loss by extrusion promotes exposure of laminin associated with increased fungal attachment, invasion, and larval lethality, whereas fungi defective in adherence or filamentation have reduced virulence. Transcriptional profiling identifies significant upregulation of the epidermal growth factor receptor ligand epigen (EPGN) upon mucosal damage. Treatment with recombinant human EPGN suppresses epithelial cell extrusion, leading to reduced fungal invasion and significantly enhanced survival. These data support the concept of augmenting epithelial restorative capacity to attenuate pathogenic invasion of fungi associated with human disease.
ISSN:2211-1247