Optimal resin monomer ratios for light-cured dental resins

Monomer ratios play a crucial role on the performances of dental resins, the optimal monomer ratios for dental resins are determined by combining the degree of conversion (DC), rate of polymerization (Rp), and mechanical properties, based on commonly-used Bis-GMA (bisphenol A-glycidyl methacrylate),...

Full description

Bibliographic Details
Main Authors: Weideng Li, Kun Wang, Zhengzhi Wang, Bei Li
Format: Article
Language:English
Published: Elsevier 2022-09-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844022018424
Description
Summary:Monomer ratios play a crucial role on the performances of dental resins, the optimal monomer ratios for dental resins are determined by combining the degree of conversion (DC), rate of polymerization (Rp), and mechanical properties, based on commonly-used Bis-GMA (bisphenol A-glycidyl methacrylate), UDMA (urethane dimethacrylate), and TEGDMA (triethyleneglycol dimethacrylate) resins. The DC and mechanical properties of the dental resins are examined by NIR (Near Infrared Ray) spectroscopy and nanoindentation tests, respectively. The results indicate that the Rp increases while the DC decreases with the loading content of Bis-GMA or UDMA in dental resins (i.e., Bis-GMA/TEGDMA and UDMA/TEGDMA). Meanwhile, both elastic modulus and hardness also present a tendency to increase. Various different monomers maybe create a strong polymer matrix in proper proportions, comprehensively comparing the performances of dental resins in different monomer ratios, the cured resins containing Bis-GMA (15–35 wt%), UDMA (37–60 wt%) and TEGDMA (20–35 wt%) show better material properties. The present study offers a quantitative analysis for Bis-GMA/UDMA/TEGDMA dental resins as well as provides guidance for the research of dental resins.
ISSN:2405-8440