Plant bioreactors for the antigenic hook-associated flgK protein expression

Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especia...

Full description

Bibliographic Details
Main Authors: Luciana Rossi, Luciano Pinotti, Alessandro Agazzi, Vittorio Dell'Orto, Antonella Baldi
Format: Article
Language:English
Published: Taylor & Francis Group 2014-01-01
Series:Italian Journal of Animal Science
Subjects:
Online Access:http://www.aspajournal.it/index.php/ijas/article/view/2939
Description
Summary:Plants engineered with genes encoding for the antigenic proteins of various microorganisms have shown to correctly express the proteins that elicit the production of antibodies in mammalian hosts. In livestock, plant-based vaccines could represent an innovative strategy for oral vaccination, especially to prevent infection by enteric pathogens. The aim of this study was to evaluate tobacco plants as a seedspecific expression system for the production of the flgK flagellar hook-associated protein from a wild type <em>Salmonella typhimurium</em> strain, as a model of an edible vaccine. The <em>flgK</em> gene is the principal component of bacterial flagella and is recognised as virulence factor by the innate immune system. It was isolated from the <em>Salmonella typhimurium</em> strain by PCR. The encoding sequence of <em>flgK</em> was transferred into a pBI binary vector, under control of soybean basic 7S globulin promoter for the seed-specific. Plant transformation was carried out using recombinant EHA 105 <em>Agrobacterium tumefaciens</em>. A transgenic population was obtained made up of independently kanamycin-resistant transgenic plants, which had a similar morphological appearance to the wild-type plants. Molecular analyses of seeds confirmed the integration of the gene and the average expression level of flgK was estimated to be about 0.6 mg per gram of seeds, corresponding to 0.33% of the total amount of soluble protein in tobacco seeds. This study showed that the foreign <em>flgK</em> gene could be stably incorporated into the tobacco plant genome by transcription through the nuclear apparatus of the plant, and that these genes are inherited by the next generation.
ISSN:1594-4077
1828-051X