On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales

In the present paper, we prove some new reverse type dynamic inequalities on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math>&...

Full description

Bibliographic Details
Main Authors: Ahmed A. El-Deeb, Clemente Cesarano
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/7/336
_version_ 1827624705511653376
author Ahmed A. El-Deeb
Clemente Cesarano
author_facet Ahmed A. El-Deeb
Clemente Cesarano
author_sort Ahmed A. El-Deeb
collection DOAJ
description In the present paper, we prove some new reverse type dynamic inequalities on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>. Our main inequalities are proved by using the chain rule and Fubini’s theorem on time scales <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>. Our results extend some existing results in the literature. As special cases, we obtain some new discrete inequalities, quantum inequalities and integral inequalities.
first_indexed 2024-03-09T12:14:28Z
format Article
id doaj.art-091e90fcbce94093a327196f57446ec9
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-09T12:14:28Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-091e90fcbce94093a327196f57446ec92023-11-30T22:47:47ZengMDPI AGAxioms2075-16802022-07-0111733610.3390/axioms11070336On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time ScalesAhmed A. El-Deeb0Clemente Cesarano1Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, EgyptSection of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Rome, ItalyIn the present paper, we prove some new reverse type dynamic inequalities on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>. Our main inequalities are proved by using the chain rule and Fubini’s theorem on time scales <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="double-struck">T</mi></semantics></math></inline-formula>. Our results extend some existing results in the literature. As special cases, we obtain some new discrete inequalities, quantum inequalities and integral inequalities.https://www.mdpi.com/2075-1680/11/7/336reverse Hardy’s inequalitydynamic inequalitytime scale
spellingShingle Ahmed A. El-Deeb
Clemente Cesarano
On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
Axioms
reverse Hardy’s inequality
dynamic inequality
time scale
title On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
title_full On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
title_fullStr On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
title_full_unstemmed On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
title_short On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales
title_sort on some generalizations of reverse dynamic hardy type inequalities on time scales
topic reverse Hardy’s inequality
dynamic inequality
time scale
url https://www.mdpi.com/2075-1680/11/7/336
work_keys_str_mv AT ahmedaeldeeb onsomegeneralizationsofreversedynamichardytypeinequalitiesontimescales
AT clementecesarano onsomegeneralizationsofreversedynamichardytypeinequalitiesontimescales