Control by time delayed feedback near a Hopf bifurcation point
In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit in the controlled system: 1) by directly studying...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2017-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6042 |
Summary: | In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit in the controlled system: 1) by directly studying the Floquet multipliers and 2) by use of the Hopf bifurcation theorem. We also propose an extension of the Pyragas control scheme for which the controlled system becomes a functional differential equation of neutral type. Using the observation that we are able to determine the direction of bifurcation by a relatively simple calculation of the root tendency, we find stability conditions for the periodic orbit as a solution of the neutral type equation. |
---|---|
ISSN: | 1417-3875 |