Bladder Cancer Metastasis Induced by Chronic Everolimus Application Can Be Counteracted by Sulforaphane In Vitro

Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteris...

Full description

Bibliographic Details
Main Authors: Saira Justin, Jochen Rutz, Sebastian Maxeiner, Felix K.-H. Chun, Eva Juengel, Roman A. Blaheta
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/15/5582
Description
Summary:Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteristics of bladder carcinoma cells exposed to everolimus combined with the isothiocyanate sulforaphane (SFN), which has been shown to exert cancer inhibiting properties. RT112, UMUC3, or TCCSUP bladder carcinoma cells were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM), alone or in combination. Adhesion and chemotaxis along with profiling details of CD44 receptor variants (v) and integrin α and β subtypes were evaluated. The functional impact of CD44 and integrins was explored by blocking studies and siRNA knock-down. Long-term exposure to everolimus enhanced chemotactic activity, whereas long-term exposure to SFN or the SFN-everolimus combination diminished chemotaxis. CD44v4 and v7 increased on RT112 cells following exposure to SFN or SFN-everolimus. Up-regulation of the integrins α6, αV, and β1 and down-regulation of β4 that was present with everolimus alone could be prevented by combining SFN and everolimus. Down-regulation of αV, β1, and β4 reduced chemotactic activity, whereas knock-down of CD44 correlated with enhanced chemotaxis. SFN could, therefore, inhibit resistance-related tumor dissemination during everolimus-based bladder cancer treatment.
ISSN:1661-6596
1422-0067