Quantifying mechanical force in axonal growth and guidance

Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial...

Full description

Bibliographic Details
Main Authors: Ahmad Ibrahim Mahmoud Athamneh, Daniel Marcel Suter
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-09-01
Series:Frontiers in Cellular Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fncel.2015.00359/full
Description
Summary:Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1) standing questions concerning the role of mechanical force in axonal growth and guidance and (2) different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.
ISSN:1662-5102