Numerical Analysis of a Horizontal Pressure Differential Wave Energy Converter

CFD modeling of an innovative wave energy device has been carried out in this study. OpenFoam wave modeling solver interFoam has been employed in order to investigate the energy extraction capability of the wave energy device. The innovative concept is based on utilizing the pressure differential un...

Full description

Bibliographic Details
Main Authors: Manimaran Renganathan, Mamdud Hossain
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/20/7513
Description
Summary:CFD modeling of an innovative wave energy device has been carried out in this study. OpenFoam wave modeling solver interFoam has been employed in order to investigate the energy extraction capability of the wave energy device. The innovative concept is based on utilizing the pressure differential under the crest and trough of a wave to drive flow through a pipe. The simulated surface elevation of a wave has been validated against the reported wave tank experimental data in order to provide confidence in the modeling outcome. Further, simulations have been carried out with the device placed near to the bottom of the numerical wave tank in order establish the energy extraction potential. The simulation results confirm that effective power can be generated from the wave energy device. The efficiency of the device decreases with the increase in wave height, although it increases with the wave period. Higher power-take off (PTO) damping is also beneficial in extracting increased energy from waves.
ISSN:1996-1073