Topological Symmetry Groups of the Petersen Graphs

The <i>topological symmetry group</i> of an embedding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Γ</mi></semantics></math></inline-formula...

Full description

Bibliographic Details
Main Authors: Deion Elzie, Samir Fridhi, Blake Mellor, Daniel Silva, Robin T. Wilson
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/6/1267
Description
Summary:The <i>topological symmetry group</i> of an embedding <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="normal">Γ</mi></semantics></math></inline-formula> of an abstract graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>S</mi><mn>3</mn></msup></semantics></math></inline-formula> is the group of automorphisms of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> that can be realized by homeomorphisms of the pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msup><mi>S</mi><mn>3</mn></msup><mo>,</mo><mi mathvariant="normal">Γ</mi><mo>)</mo></mrow></semantics></math></inline-formula>. These groups are motivated by questions about the symmetries of molecules in space. The Petersen family of graphs is an important family of graphs for many problems in low-dimensional topology, so it is desirable to understand the possible groups of symmetries of their embeddings in space. In this paper, we find all the groups that can be realized as topological symmetry groups for each of the graphs in the Petersen family. Along the way, we also complete the classification of the realizable topological symmetry groups for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></semantics></math></inline-formula>.
ISSN:2073-8994