Summary: | In this work, we study the degree-based topological invariants, and the general sum-connectivity, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mi>B</mi> <msub> <mi>C</mi> <mn>4</mn> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <msub> <mi>A</mi> <mn>5</mn> </msub> </mrow> </semantics> </math> </inline-formula>, general Zagreb, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>G</mi> <mi>A</mi> </mrow> </semantics> </math> </inline-formula>, generalized Randić, and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mrow> </semantics> </math> </inline-formula> indices of the line graphs of some rooted product graphs (<inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>n</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>P</mi> <mi>k</mi> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mi>n</mi> </msub> <mrow> <mo>{</mo> <msub> <mi>S</mi> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>) are determined by menas of the concept of subdivision. Moreover, we also computed all these indices of the line graphs of the subdivision graphs of <i>i</i>-th vertex rooted product graph <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mrow> <mo>{</mo> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>}</mo> </mrow> </mrow> </semantics> </math> </inline-formula>.
|